

Disk-Jet Connection in Black Hole Sources

Mayur Bhaskar Shende

Supervisor: Prof. Prasad Subramanian

May 31, 2021

Indian Institute of Science Education and Research (IISER), Pune, India

 \bullet Interesting observational features about 3C 120, and 3C 111 -

Dips in the X-ray luminosity

Ejections of superluminal radio components from the mm-VLBI core

Interesting observational features about 3C 120, and 3C 111 Dips in the X-ray luminosity
 Ejections of superlumina

Ejections of superluminal radio components from the mm-VLBI core

 \bullet Interesting observational features about 3C 120, and 3C 111 -

Dips in the X-ray luminosity

Figure 1: Upper panel: X-ray dips in 3C 120 (Chatterjee et al. 2009), Lower panel: X-ray dips in 3C 111 (Chatterjee et al. 2011)

Ejections of superluminal radio components from the mm-VLBI core

 \bullet Interesting observational features about 3C 120, and 3C 111 -

Dips in the X-ray luminosity

Figure 1: Upper panel: X-ray dips in 3C 120 (Chatterjee et al. 2009), Lower panel: X-ray dips in 3C 111 (Chatterjee et al. 2011)

Ejections of superluminal radio components from the mm-VLBI core

 \bullet Interesting observational features about 3C 120, and 3C 111 -

Dips in the X-ray luminosity

Figure 1: Upper panel: X-ray dips in 3C 120 (Chatterjee et al. 2009), Lower panel: X-ray dips in 3C 111 (Chatterjee et al. 2011)

Ejections of superluminal radio components from the mm-VLBI core

Figure 2: VLBA (43 GHz) images of blobs in 3C 120 (Chatterjee et al. 2009)

• We draw analogies with Coronal Mass Ejections (CMEs) from the solar corona (Shende et al. 2019, ApJ, 877,130)

• We draw analogies with Coronal Mass Ejections (CMEs) from the solar corona (Shende et al. 2019, ApJ, 877,130)

Figure 3: CME (from SOHO/LASCO database)

• We draw analogies with Coronal Mass Ejections (CMEs) from the solar corona (Shende et al. 2019, ApJ, 877,130)

Figure 3: CME (from SOHO/LASCO database)

Figure 4: Blob as a flux rope (Yuan et al. 2009)

• We draw analogies with Coronal Mass Ejections (CMEs) from the solar corona (Shende et al. 2019, ApJ, 877,130)

Figure 3: CME (from SOHO/LASCO database)

Figure 4: Blob as a flux rope (Yuan et al. 2009)

Toroidal instability of pre-existing flux ropes

• We draw analogies with Coronal Mass Ejections (CMEs) from the solar corona (Shende et al. 2019, ApJ, 877,130)

Figure 3: CME (from SOHO/LASCO database)

Toroidal instability of pre-existing flux ropes

Figure 4: Blob as a flux rope (Yuan et al. 2009)

Forces acting on a blob = Lorentz self-force + Lorentz force due to external poloidal fields + Gravitational pull

Figure 5: Height-time profile of a representative plasmoid for different values of $V_{\rm A_{\rm h}}$ compared with observations of blob E8 of 3C 120

Parameter			% change
			in β_{app}
V _{Ah}	Best fit	6050 km/s	
	% change	-3.31	-12.63
	% change	+2.14	+16.15
β ₀	Best fit	0.001	
	% change	-99	-0.02
	% change	+900	+0.1
п	Best fit	4	
	% change	-10	+1.41
	% change	+10	-0.93
R ₀	Best fit	5 Rg	
	% change	-0.8	+16.94
	% change	$^{+1}$	-15.16
R_0/b_0	Best fit	10	
	% change	-4	-12.25
	% change	+4	+16.15

Parameter			% change
			in β_{app}
$V_{\rm A_h}$	Best fit	6050 km/s	
	% change	-3.31	-12.63
	% change	+2.14	+16.15
β ₀	Best fit	0.001	
	% change	-99	-0.02
	% change	+900	+0.1
n	Best fit	4	
	% change	-10	+1.41
	% change	+10	-0.93
R ₀	Best fit	5 Rg	
	% change	-0.8	+16.94
	% change	+1	-15.16
R_0/b_0	Best fit	10	
	% change	-4	-12.25
	% change	+4	+16.15

Figure 5: Height-time profile of a representative plasmoid for different values of $V_{\rm A_{\rm h}}$ compared with observations of blob E8 of 3C 120

• Model predictions for the time evolution of plasmoids agree well with the observed trajectories

Farameter			70 change
			in β_{app}
$V_{A_{h}}$	Best fit	6050 km/s	
	% change	-3.31	-12.63
	% change	+2.14	+16.15
β ₀	Best fit	0.001	
	% change	-99	-0.02
	% change	+900	+0.1
n	Best fit	4	
	% change	-10	+1.41
	% change	+10	-0.93
R ₀	Best fit	5 Rg	
	% change	-0.8	+16.94
	% change	+1	-15.16
R_0/b_0	Best fit	10	
	% change	-4	-12.25
	% change	+4	+16.15

0/

Figure 5: Height-time profile of a representative plasmoid for different values of $V_{\rm A}{}_{\rm h}$ compared with observations of blob E8 of 3C 120

- Model predictions for the time evolution of plasmoids agree well with the observed trajectories
- We analyze the sensitivity of the model predictions to changes in the model parameters, by way of outlining a viable parameter space

 \bullet Interesting observational features about 3C 120, and 3C 111 -

Dips in the X-ray luminosity

Figure 6: Upper panel: X-ray dips in 3C 120 (Chatterjee et al. 2009), Lower panel: X-ray dips in 3C 111 (Chatterjee et al. 2011)

Ejections of superluminal radio components from the mm-VLBI core

Figure 7: VLBA (43 GHz) images of blobs in 3C 120 (Chatterjee et al. 2009)

• X-ray dip durations: 3C 120: 5-120 days, 3C 111: 73-402 days, GRS 1915+105: 5-6 s

- X-ray dip durations: 3C 120: 5-120 days, 3C 111: 73-402 days, GRS 1915+105: 5-6 s
- Suggests that accretion disk corona is periodically "emptied" and "refilled"

- X-ray dip durations: 3C 120: 5-120 days, 3C 111: 73-402 days, GRS 1915+105: 5-6 s
- Suggests that accretion disk corona is periodically "emptied" and "refilled"

• We address these timescales as viscous infalling timescale in our model (Shende et al. 2021, MNRAS, 501, 3741)

- X-ray dip durations: 3C 120: 5-120 days, 3C 111: 73-402 days, GRS 1915+105: 5-6 s
- Suggests that accretion disk corona is periodically "emptied" and "refilled"

- We address these timescales as viscous infalling timescale in our model (Shende et al. 2021, MNRAS, 501, 3741)
- \bullet Physical prescription for viscosity instead of specifying the values of α

- X-ray dip durations: 3C 120: 5-120 days, 3C 111: 73-402 days, GRS 1915+105: 5-6 s
- Suggests that accretion disk corona is periodically "emptied" and "refilled"

- We address these timescales as viscous infalling timescale in our model (Shende et al. 2021, MNRAS, 501, 3741)
- Physical prescription for viscosity instead of specifying the values of $\boldsymbol{\alpha}$
- Using published simulation results for cosmic ray diffusion through turbulent magnetic fields

Parameter	% change	% change in
	in reference	in $t_{ m infall}$
ρ	+10	-0.1
	-10	+0.1
σ^2	+10	+0.5
	-10	-0.5
R_{out}	+10	+15
	-10	-15

 $\begin{array}{l} \mbox{Table 1: Sensitivity analysis of parameters} \\ \mbox{with } \rho_{\rm ref} = 0.5, \ \sigma_{\rm ref}^2 = 10, \\ \mbox{$R_{\rm out}_{\rm ref} = 90 $ $R_{\rm g}$: fiducial model for 3C 120} \end{array}$

Figure 8: Upper panel: Parameter space corresponding to X-ray dip in the range 45–50 days in 3C 120, lower panel: Representative accretion disk models for 3C 120

Parameter	% change	% change in	
	in reference	in t_{infall}	
ρ	+10	-0.1	
	-10	+0.1	
σ^2	+10	+0.5	
	-10	-0.5	
$R_{ m out}$	+10	+15	
	-10	-15	

Conclusions:

 $\begin{array}{l} \mbox{Table 1: Sensitivity analysis of parameters} \\ \mbox{with } \rho_{\rm ref} = 0.5, \ \sigma_{\rm ref}^2 = 10, \\ \mbox{$R_{\rm out}_{\rm ref} = 90 $ $R_{\rm g}$: fiducial model for 3C 120} \end{array}$

Figure 8: Upper panel: Parameter space corresponding to X-ray dip in the range 45–50 days in 3C 120, lower panel: Representative accretion disk models for 3C 120

Parameter	% change	% change in	
	in reference	in t_{infall}	
ρ	+10	-0.1	
	-10	+0.1	
σ^2	+10	+0.5	
	-10	-0.5	
$R_{ m out}$	+10	+15	
	-10	-15	

 $\begin{array}{l} \mbox{Table 1: Sensitivity analysis of parameters} \\ \mbox{with } \rho_{\rm ref} = 0.5, \ \sigma_{\rm ref}^2 = 10, \\ R_{\rm out}_{\rm ref} = 90 \ R_{\rm g} ; \ \mbox{fiducial model for 3C 120} \end{array}$

Conclusions:

 Instead of specifying the values of α, we give the physical prescription for viscosity in the hot, inner disk

Figure 8: Upper panel: Parameter space corresponding to X-ray dip in the range 45–50 days in 3C 120, lower panel: Representative accretion disk models for 3C 120

Figure 8: Upper panel: Parameter space corresponding to X-ray dip in the range 45–50 days in 3C 120, lower panel: Representative accretion disk models for 3C 120

Parameter	% change	% change in
	in reference	in t_{infall}
ρ	+10	-0.1
	-10	+0.1
σ^2	+10	+0.5
	-10	-0.5
$R_{\rm out}$	+10	+15
	-10	-15

 $\begin{array}{l} \mbox{Table 1: Sensitivity analysis of parameters} \\ \mbox{with } \rho_{\rm ref} = 0.5, \ \sigma_{\rm ref}^2 = 10, \\ R_{\rm out}_{\rm ref} = 90 \ R_{\rm g} \text{: fiducial model for 3C 120} \end{array}$

Conclusions:

- Instead of specifying the values of α, we give the physical prescription for viscosity in the hot, inner disk
- The disk infall time-scales (t_{infall}) obtained with this model are in good agreement with X-ray observations of 3C 120, 3C 111 and GRS 1915+105

Conclusions and current work

Broad conclusion:

• Our work outlines a plausible scenario for episodes of (inner) disk collapse accompanied by blob ejection

- Origin of (matter dominated) steady winds from accretion disk coronae
- (1) Self-consistent inflow-outflow solutions: fluid description
- (2) Particle acceleration mechanisms in the disk corona: particle description
 - We aim to bridge this gap and show how the high energy tail of the accelerated particle population is preferentially launched outwards to form a relativistic wind (Shende et al. 2021 in preparation)

Conclusions and current work

Broad conclusion:

• Our work outlines a plausible scenario for episodes of (inner) disk collapse accompanied by blob ejection

- Origin of (matter dominated) steady winds from accretion disk coronae
- (1) Self-consistent inflow-outflow solutions: fluid description
- (2) Particle acceleration mechanisms in the disk corona: particle description
 - We aim to bridge this gap and show how the high energy tail of the accelerated particle population is preferentially launched outwards to form a relativistic wind (Shende et al. 2021 in preparation)

Broad conclusion:

• Our work outlines a plausible scenario for episodes of (inner) disk collapse accompanied by blob ejection

- Origin of (matter dominated) steady winds from accretion disk coronae
- (1) Self-consistent inflow-outflow solutions: fluid description
- (2) Particle acceleration mechanisms in the disk corona: particle description
 - We aim to bridge this gap and show how the high energy tail of the accelerated particle population is preferentially launched outwards to form a relativistic wind (Shende et al. 2021 in preparation)

Broad conclusion:

• Our work outlines a plausible scenario for episodes of (inner) disk collapse accompanied by blob ejection

- Origin of (matter dominated) steady winds from accretion disk coronae
- (1) Self-consistent inflow-outflow solutions: fluid description
- (2) Particle acceleration mechanisms in the disk corona: particle description
 - We aim to bridge this gap and show how the high energy tail of the accelerated particle population is preferentially launched outwards to form a relativistic wind (Shende et al. 2021 in preparation)

Broad conclusion:

• Our work outlines a plausible scenario for episodes of (inner) disk collapse accompanied by blob ejection

- Origin of (matter dominated) steady winds from accretion disk coronae
- (1) Self-consistent inflow-outflow solutions: fluid description
- (2) Particle acceleration mechanisms in the disk corona: particle description
 - We aim to bridge this gap and show how the high energy tail of the accelerated particle population is preferentially launched outwards to form a relativistic wind (Shende et al. 2021 in preparation)

Thank You!