

Signatures of jets and accretion for the EHT

Dominik Schleicher (Universidad de Concepción)

Collaborators:

Bidisha Bandyopadhyay, Javier Lagunas, Javier Pedreros, Neil Nagar, Venkatessh Ramakrishnan, Felipe Agurto (Concepción); Patricia Arévalo, Elena Lopéz, Yaherlyn Díaz (Valparaiso); Christian Fendt (Heidelberg); Fu-Guo Xie (Shanghai)

Goal: Studying accretion and jets for further AGN with the ng-EHT

Tool: Advection-dominated accretion flow (ADAF) models for low-luminosity AGN from Yuan & Narayan (2014)

Applied to: Cen A, M84, ,NGC 4594, NGC 3998, NGC 4278

Model constraints via spectral data from radio to X-ray frequencies

Full paper: Bandyopadhyay et al. (2019), MNRAS, 490, 4606

Potential to explore sources with different properties

Source	$log(M_{BH}/M_{\odot})$	Distance (Mpc)	$ heta_{ m Ring}(\mu{ m as})$	Eddington Ratio (L_{Bol}/L_{Edd})
NGC 5128 (Cen A)	7.7	3.8	1.5	5.0×10^{-4}
NGC 4374 (M84)	8.9	17.1	4.8	5.0×10^{-6}
NGC 4594 (Sombrero, M 104)	8.5	9.1	3.6	1.5×10^{-6}
NGC 3998	8.9	13.1	6.2	1.0×10^{-4}
NGC 4278	8.6	14.9	2.7	5.0×10^{-6}

Potential to probe accretion at different Eddington ratios as well as absolute accretion rates!

The ADAF model

$$\dot{M}(R) = \dot{M}(R_{tr}) \quad \left(\frac{R}{R_{tr}}\right)^{s} = 4\pi\rho RH|v|.$$
(1)

$$v\frac{dv}{dR} - \Omega^{2}R = -\Omega_{K}^{2}R \quad - \quad \frac{1}{\rho}\frac{d}{dR}(\rho c_{s}^{2}).$$
(2)

$$\frac{d\Omega}{dR} = \frac{v\Omega_{K}(\Omega R^{2} - j)}{\alpha R^{2}c_{s}^{2}}.$$
(3)

$$\rho v \left(\frac{de_{i}}{dR} - \frac{p_{i}}{\rho^{2}}\frac{d\rho}{dR}\right) = (1 - \delta)q^{+} - q^{ie}.$$
Yuan et al. (2005);
Yuan & Narayan (2014)

$$\rho v \left(\frac{de_{e}}{dR} - \frac{p_{e}}{\rho^{2}}\frac{d\rho}{dR}\right) = \delta q^{+} + q^{ie} - q^{-}.$$
(4)

SED calculated considering synchrotron emission, bremsstrahlung and inverse Compton scattering. Simple jet model following Spada et al. (2001) assuming mass loss rate, electron power-law distribution and bulk Lorentz factor.

Results for M87

Derived radial flux profile

Short summary of results (1)

Short summary of results (2)

