Magnetic fields of parsec-scale AGN jets from multi-epoch VLBA linear polarization imaging

Alexander Pushkarev

Margo Aller, Hugh Aller, Mary Hodge, Yuri Y. Kovalev, Matthew Lister, Tuomas Savolainen, Ilya Pashchenko, Daria Zobnina

Jets 2021 – 14-18 June, Heidelberg, Germany

Supported by Russian Science Foundation project 21-12-00241

Observations & Source Sample

- At least 5 epochs from MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) or archival full Stokes obs. at 15 GHz
- → 438 sources (60% quasars, 30% BL Lacs, 4% RG)
- → 278 unique epochs (80% MOJAVE) from 1996 to 2019
- → 5918 single-epoch images

Very Long Baseline Array

Method of Polarization Stacking

$$P = \sqrt{Q^2 + U^2} \qquad m = P/I \qquad \chi = 0.5 \operatorname{atan}(U/Q)$$

Procedure

- Convolve Stokes I, Q, U single-epoch maps with a circular beam
- Align by the core position
- Filter out noisy epochs (rms > 3 rms_med)
- Produce stacked I maps

Approach 1

- Produce stacked Q, U maps → stacked P, EVPA, m maps
- Correction for Ricean (Wardle & Kronberg, 1974) and CLEAN biases
- → Deeper P-images (sigma_p, m, EVPA ~ 1/sqrt(N))

Approach 2

- Produce single-epoch P, EVPA, m maps → stacked P, EVPA, m maps
- No gain in sensitivity (averaging P>0 signal)
- Allows to study variability (see poster by Daria Zobnina et al.)

Polarization Stacking Example: 3C454.3

It takes ~ 10 years to fill out jet cross-section in P

Polarization degree along the jet

 $dE N(E) \propto E^{-\gamma} dE$

$$S \propto \nu^{+\alpha}, \quad \gamma = 1 - 2\alpha$$

- Degree of polarization
 - constant within the core region, m_med \sim 1%, $\,$ m < 10% $\,$
 - increases down the jet reaching 10% 30% due to
 - spectral aging ($\Delta \alpha \approx$ -0.6; *Kardashev 1962; Hovatta et al. 2014*)
 - turbulence weakening and/or pitch-angle decrease
- BL Lacs are more polarized with EVPA parallel to jet axis
- Radio galaxies are weakly polarized in their cores

Polarization degree along the jet

- Quasars are less polarized than BL Lacs in their inner jets
- m-values become comparable at larger (kpc) scales
- Steeper spectra: $\alpha_q \sim -1.1 \text{ vs } \alpha_b \sim -0.8$ (*Hovatta et al. 2014*)

Apparent speeds (*Lister et al. in prep.*) Doppler-factors (Homan et al., in prep.)

Polarization degree across the jet

- U-shaped transverse profile of m
- becomes seen beyond the core

→ evidence for a helical B-field

 superposition of P-emission from regions with different EVPA

Summary

> Stacked P-images delineate the long-term persistent configuration of B-field

- about 10 yrs to fill out jet cross-section in P (~5 yrs for I)

> B-field becomes more regular down the jet (m reaches up to ~20%)

- spectral aging
- turbulence weakening
- pitch-angle decreasing
- > Degree of polarization increases towards the jet edges
 - U-shaped profile
 - helical field
 - spine-sheath structure

> On average, BL Lacs are more polarized than quasars on pc-scales