AGN jet feedback in galaxy clusters: the case for cosmic ray heating

Christoph Pfrommer¹

in collaboration with

K. Ehlert¹, R. Weinberger², S. Jacob, R. Pakmor³, V. Springel³

¹AIP, ²Harvard, ³MPA

Extragalactic jets on all scales - launching, propagation, termination, Heidelberg, June 2021

Feedback by active galactic nuclei

Paradigm: accreting super-massive black holes at galaxy cluster centers launch relativistic jets, which provide energetic feedback to balance cooling \Rightarrow **but how?**

- Jacob & CP (2017a,b): study large sample of 40 cool core clusters
- spherically symmetric steady-state solutions where cosmic ray (CR) heating balances radiative cooling

Cosmic ray heating MHD jet simulations

Interactions of cosmic rays and magnetic fields

Cosmic ray

sketch: Jacob

< ∃⇒

Christoph Pfrommer AGN jet feedback in galaxy clusters

AGN feedback Cosmic ray heating

Interactions of cosmic rays and magnetic fields

sketch: Jacob

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

AGN feedback Cosmic ray heating

Interactions of cosmic rays and magnetic fields

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

• CRs scatter on magnetic fields \rightarrow isotropization of CR momenta

イロト イ理ト イヨト イヨト

Cosmic ray heating MHD jet simulations

Cosmic ray Alfvén wave heating

• CR streaming instability: Kulsrud & Pearce 1969

- if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
- scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
- wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Cosmic ray heating MHD jet simulations

Case study A1795: heating and cooling

• CR heating dominates in the center

• conductive heating takes over at larger radii, $\kappa = 0.42\kappa_{Sp}$

• $\mathcal{H}_{cr} + \mathcal{H}_{cond} \approx C_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹

< 🗇 🕨

Cosmic ray heating MHD jet simulations

Gallery of solutions: density profiles

Christoph Pfrommer

AGN jet feedback in galaxy clusters

Cosmic ray heating MHD jet simulations

Gallery of solutions: temperature profiles

Christoph Pfrommer

AGN jet feedback in galaxy clusters

Cosmic ray heating MHD jet simulations

Hadronically induced radio emission

Jacob & CP (2017b)

Cosmic ray heating MHD jet simulations

Hadronically induced radio emission: NVSS limits

Jacob & CP (2017b)

- continuous sequence in $F_{\nu,\text{pred}}/F_{\nu,\text{NVSS}}$
- CR heating viable solution for non-RMH clusters
- CR heating solution ruled out in radio mini halos (RMHs)

Cosmic ray heating MHD jet simulations

How can we explain these results?

self-regulated feedback cycle driven by CRs

< ∃⇒

Cosmic ray heating MHD jet simulations

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

< ∃⇒

Cosmic ray heating MHD jet simulations

How can we explain these results?

• self-regulated feedback cycle driven by CRs

AGN injects CRs

→

CR heating balances cooling

Cosmic ray heating MHD jet simulations

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

t

CRs stream outwards and become too dilute to heat the cluster

Cosmic ray heating MHD jet simulations

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

t

CRs stream outwards and become too dilute to heat the cluster

radio mini halo

How can we explain these results?

self-regulated feedback cycle driven by CRs

How can we explain these results?

self-regulated feedback cycle driven by CRs

Cosmic ray heating MHD jet simulations

Self-regulated heating/cooling cycle in cool cores

Jacob & CP (2017b)

possibly CR-heated cool cores vs. radio mini halo clusters:

- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance

Cosmic ray heating MHD jet simulations

Jet simulation: gas density, CR energy density, B field

$60 \mathrm{Myr}$

AGN feedback Cosmic ray heating MHD jet simulations

Perseus cluster – heating vs. cooling: theory

• CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_o yr⁻¹

AGN feedback Cosmic ray heating MHD jet simulations

Perseus cluster – heating vs. cooling: simulations

Ehlert, Weinberger, CP+ (2018)

- CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_o yr⁻¹
- simulated CR heating rate matches 1D steady state model

Conclusions

large sample of cool cores \Rightarrow self-regulation cycle

- Iow-density cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic ray heating ruled out systems are strongly cooling and form stars at large rates

Conclusions

large sample of cool cores \Rightarrow self-regulation cycle

- Iow-density cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic ray heating ruled out systems are strongly cooling and form stars at large rates

MHD simulations of AGN jets

- cosmic ray heating is isotropic in cluster center
- cosmic ray heating balances cooling for AGN duty cycle

AGN feedback Cosmic ray heating MHD jet simulations

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

AGN jet feedback in galaxy clusters

Cosmic ray heating MHD jet simulations

Literature for the talk

Cosmic ray feedback in galaxy clusters:

- Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady state solutions, 2017a, MNRAS.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2017b, MNRAS.
- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters, 2018, MNRAS.

Cosmic ray heating MHD jet simulations

Additional slides

æ

(신문) (신문)

Christoph Pfrommer AGN jet feedback in galaxy clusters

Cosmic ray heating MHD jet simulations

Feedback heating: M87 at radio wavelengths

 $[\]nu =$ 1.4 GHz (Owen+ 2000)

 high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!

Christoph Pfrommer AGN jet feedback in galaxy clusters

Cosmic ray heating MHD jet simulations

Feedback heating: M87 at radio wavelengths

 $\nu =$ 1.4 GHz (Owen+ 2000)

 $\nu = 140 \text{ MHz}$ (LOFAR/de Gasperin+ 2012)

- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: same picture → puzzle of "missing fossil electrons"
- solution: electrons are fully mixed with the dense cluster gas and cooled through Coulomb interactions

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:
 (1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)

 \rightarrow confirming this triad would be smoking gun for first $\gamma\text{-ray}$ signal from a galaxy cluster!

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

 $\mathcal{H}_{cr} = -\boldsymbol{v}_{A} \boldsymbol{\cdot} \boldsymbol{\nabla} \boldsymbol{P}_{cr}$

 calibrate P_{cr} to γ-ray emission and v_A to radio and X-ray emission
 → spatial heating profile

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

$$\mathcal{H}_{cr} = -\boldsymbol{v}_{A} \boldsymbol{\cdot} \boldsymbol{\nabla} \boldsymbol{P}_{cr}$$

 calibrate P_{cr} to γ-ray emission and v_A to radio and X-ray emission
 → spatial heating profile

< 🗇 🕨

 \rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters!

