

Comparison of T_i/T_e prescription: two-temperature GRMHD simulations

Extra-galactic Jets in All Scales, Heidelberg, Germany, 14-18 June, 2021

Yosuke Mizuno

- Tsung-Dao Lee Institute, Shanghai Jiao Tong University
 - Collaborators: C. M. Fromm, Z. Younsi, O. Porth, H. Olivares, L. Rezzolla

Introduction

- For imaging shadow and jets in M87, synchrotron emission from thermal electrons is calculated from GRMHD simulations in post-processing.
- In hot and low-density accretion flows such as RIAFs, Coulomb coupling between electrons and ions are inefficient => no thermal equilibrium.
- In single fluid MHD, ion temperature dominates, electron temperature can not be determined.
- The commonly used parameterised T_i/T_e prescription: so-called R-^β model (Moscibrodzka et al. 2016)

$$\frac{T_{\rm i}}{T_{\rm e}} = R_{\rm l} \frac{1}{1+\beta_p^2} + R_{\rm h}$$

GRMHD

Introduction (cont.)

- et al. 2015)
- This prescription provides electron temperature directly from GRMHD simulations
- In this work, direct comparison between parametrised T_i/T_e prescription and electron heating prescription obtained from two-temperature GRMHD simulations (turbulent & magnetic reconnection heating)
 - Consider: images & visibilities at 230GHz, spectrum, image size, & time variability at 230GHz

Recently new formulation of two-temperature GRMHD simulations was proposed (Ressler)

Simulation & Images

GRMHD

- 3D simulations of magnetied accretion flows onto a black hole by BHAC Consider Magnetically Arrested Disk (high magnetic flux accretes)

 - BH spin: a=-0.9375, 0, 0.9375
 - run up to t=15000M
 - heating model in electron thermodynamics: turbulent & magnetic reconnection

GRRT

- Calculated by BHOSS
 - 101 snapshots for each cases (t=14000 15000M, 10M cadence)
 - Apply M87 BH mass & distance
 - FoV: 640 x 640 μas
 - Average flux: 0.5 Jy, inclination angle: 163 deg & 60 deg \bullet
 - Electron heating prescription: Turbulent & reconnection
 - $R-\beta$ prescription: $R_1 = 1$, $R_h = 1$, 5, 10, 20, 40, 80, 160

GRMHD data

Turbulent

GRRT image at 230GHz

Time-averaged (14000-15000M) (Logarithmic scale, i=163 deg)

- Is seen some difference
- Heating prescriptions have more extended diffused emission structure (in particular counter-rotating cases)

Reconnection

Rh=1

Rh=160

 $\log_{10} S \left[\text{Jy/pixel} \right]$

Relative R.A. $[\mu as]$

Image Comparison

- Comparison of 230 GHz snapshots (i=163 deg) between electron heating and R-β prescriptions
- Image comparison metrics: MSE, DSSIM, 1-NCCC
 - Smaller value means better match
- In general, R-β model well matchs both heating models
 - Turbulent model: R_h=1 & 5 have smallest values, increasing with R_h
 - Reconnection model: R_h=5 is the best matched, increasing with R_h

- We have compared T_i/T_e prescription between commonly used parameterised R- β model and electron heating prescriptions obtained from two-temperature GRMHD simulations.
- From the comparison of GRRT images, the R- β prescription is well-matched by both heating prescriptions, although images of electron heating prescriptions have a more extended and diffused emission region, in particular for counter-rotating black hole cases.
- In general, smaller R_h values yield better match to both prescriptions.
- From this comparison study, we conclude that commonly used R- β model reproduces well the T_i/T_e prescription obtained from two temperature GRMHD simulations.
- Future work: consideration of non-thermal electrons for modelling jets

Summary

For more detail: Mizuno et al. (2021) MNRAS, in press, arXiv:2106.09272

