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Fossati 1998: The Blazar Sequence
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[adapted from Fossati et al 1998]
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Envelope

Hypothesis: The Blaza

Departing from the sequence,
sources drop in Luminosity and
frequency as 0 increases

Jet Power Increases (blue — red)
Along 0° path (gray): L, increases
» v, decreases

Log (vL,)

Need to measure: Orientation (6)
® Intrinsic Jet Power
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Meyer 2011: The “Blazar Envelope”
“Simple jet”
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Log (vL,)

Meyer 2011: The “Blazar Envelope”
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New Hypothesis: a “broken” sequence?
Need better statistics!
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ABSTRACT

Our understanding of the unification of jetted AGN has evolved greatly as jet samples have increased in size. Here, based on
the largest-ever sample of over 2000 well-sampled jet spectral energy distributions, we examine the synchrotron peak frequency
— peak luminosity plane, and find little evidence for the anti-correlation known as the blazar sequence. Instead, we find strong
evidence for a dichotomy in jets, between those associated with efficient or ‘quasar-mode’ accretion (strong/type II jets) and
those associated with inefficient accretion (weak/type I jets). Type II jets include those hosted by high-excitation radio galaxies,
flat-spectrum radio quasars (FSRQ), and most low-frequency-peaked BL Lac objects. Type I jets include those hosted by low-
excitation radio galaxies and blazars with synchrotron peak frequency above 103 Hz (nearly all BL Lac objects). We have
derived estimates of the total jet power for over 1000 of our sources from low-frequency radio observations, and find that the jet
dichotomy does not correspond to a division in jet power. Rather, type II jets are produced at all observed jet powers, down to
the lowest levels in our sample, while type I jets range from very low to moderately high jet powers, with a clear upper bound at
~ 10" erg s~!. The range of jet power in each class matches exactly what is expected for efficient (i.e., a few to 100% Eddington)
or inefficient (< 0.5% Eddington) accretion onto black holes ranging in mass from 107 — 10°> M.

Key words: galaxies: active; galaxies: jets; catalogs; BL Lacertae objects: general

1 INTRODUCTION Historically, a large number of sub-classes of radio-loud AGN have
been defined, usually based on observational properties in the band in
which they were discovered — e.g. steep-spectrum radio quasars, op-
tically violent variable sources, X-ray selected BL Lacertae objects,
broad-line radio galaxies, and many more (see Urry & Padovani
1995). Part of the extreme variety of appearance is clearly due to
differences in viewing angle, as the radiation from the jet comes to
dominate the spectral energy distribution (SED) when oriented at

cmall analac Auna ta NMannlar hanctina  which fan an hanra tha an_

Radio-Loud Active Galactic Nuclei (RL AGN) exhibit highly colli-
mated relativistic jets of non-thermal plasma originating very near
the central super-massive black hole (of 10% — 10'°M,) and propa-
gating out to kpe - Mpc scales (see, e.g. Blandford et al. 2019, for a
recent review). They can have a major impact on their host galaxy and
surrounding environment, heating the intercluster medium (McNa-
mara & Nulsen 2007; Chang et al. 2012) and halting or (more rarely)



New Decade, New Study

Starting sample of 6585 radio-loud AGN

Table 1. Radio-Loud AGN Samples

Sample Abbr. Ninit  Nfinal  Nunique Reference Ref. Let.
¢ @) ©)) @ (&) © M
1 Jansky Blazar Sample 1y 34 34 0 Stickel et al. (1991) a
2 Jansky Survey of Flat-Spectrum Sources 2y 232 129 3 Wall & Peacock (1985) b
2-degree field (2dF) QSO survey 2Q7Z 26 1 0 Londish et al. (2002, 2007) c
Third Cambridge Catalogue of Radio Sources 3CRR 173 68 2 Laing et al. (1983) d
The 3rd Catalog of Hard Fermi-LAT Sources 3FHL 1553 446 1 Ajello et al. (2017) e
The 3rd Catalog of AGN Detected by the Fermi/LAT 3LAC 1894 838 100 Ackermann et al. (2015) f
Molonglo Equatorial Radio Galaxies 178 49 8 Best et al. (1999) g
The Candidate Gamma-Ray Blazar Survey CGRaBs 1625 1154 467 Healey et al. (2008) h
Cosmic Lens All-Sky Survey CLASS 232 79 23 Caccianiga & Marcha (2004) i
Deep X-Ray Radio Blazar Survey DXRBS 283 151 47 Landt et al. (2001) j
Einstein Slew Survey Sample of BL Lac Objects 66 14 0 Perlman et al. (1996) k
Hamburg-RASS Bright X-ray AGN Sample HRX 172 42 2 Beckmann et al. (2003) 1
The MOJAVE Sample of VLBI Monitored Jets 512 456 21 Lister et al. (2018);1 m
Metsahovi Radio Observatory BL Lacertae sample 393 168 3 Nieppola et al. (2006b) n
Parkes Quarter-Jansky Flat-Spectrum Sample 878 524 155 Jackson et al. (2002) o
Radio-Emitting X-ray Source Survey REX 143 32 9 Caccianiga et al. (1999) p
Radio-Optical-X-ray Catalog ROXA 801 234 101 Turriziani et al. (2007) q
RASS - Green Bank BL Lac sample RGB 127 72 1 Laurent-Muehleisen et al. (1999) r
Einstein Medium-Sensitivity Survey of BL Lacs EMSS 52 6 0 Rector et al. (2000) 8
RASS - SDSS Flat-Spectrum Sample 501 96 21 Plotkin et al. (2008) t
Sedentary Survey of High-Peak BL Lacs 150 27 1 Giommi et al. (1999b) u
Ultra Steep Spectrum Radio Sources 668 2 0 De Breuck et al. (2000) v
The X-Jet Online Database 117 96 10 2 w

Uhttp:/fwww.physics.purdue.edu/astro/MOJAVE/allsources.html
Zhttps://hea-www.harvard.eduw/XJET/



New Decade, New Study

Starting sample of 6585 radio-loud AGN

Analyzed 460 VLA observations, 169
ALMA observations, 2 SMA and 1 VLA
program, 17 archival HST observations
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Results
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Return to a dichotomy?
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Conclusions

* The Blazar Sequence does not exist

* No monoparametric mapping between jet power and spectral
type

* Type ll (FSRQ/FR ) jets exist from highest to lowest jet powers



REMINDER: BIG BLUE BUMP

The thermal emission from
the accretion disk is a sign i
of a powerful accretion
disk, thought to be
characteristic of strong jets
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Conclusions

The Blazar Sequence does not exist

* No monoparametric mapping between jet power and spectral
type

* Type ll (FSRQ/FR ) jets exist from highest to lowest jet powers
Not all BL Lacs are equal

° LBLs (low-peaking, vp < 1015 Hz) are mostly type Il jets



Meyer 2011: Eddington Ratio
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Number of Sources

Keenan 2021: Eddington Ratio
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Conclusions/Observations

* The Blazar Sequence does not exist

No monoparametric mapping between jet power and spectral
type

Type Il (FSRQ/FR Il) jets exist from highest to lowest jet powers

* Notall BL Lacs are equal

LBLs (low-peaking, v, < 10" Hz) are mostly type Il jets

* There is a Jet Dichotomy which is apparent in the v,-L, plane

Strong/type-ll jets have high-efficiency accretion
Strong/type-Il jets are not “allowed” to have v, > 10" Hz

Weak/type-I jets are inefficient accretors, matching spectral type

Weak/type-| jets have higher v,

Weak/type-| jets have a maximum power of 10% erg/s




Radio Core Dominance is not Universal
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Future work/what remains

While the v, divide at 10" Hz seems clear, not apparent
what makes the difference between a source at 10" Hz
and 10" Hz.

Other types of jets/more LL AGN need to be studied
(especially misaligned jets)

Some regions of the v,-L, plane are still poorly populated
(IBLs are rare).

Statistically Complete Samples?
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Blazars: Looking down the throat of a jet
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RADIO GALAXY SED

Extended Emission (green) now
dominates over the de-beamed
core emission (blue)

Open gray circles are
dominated by non-jet sources
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DOPPLER BOOSTING

When the plasma is relativistic, the Apparent
Luminosity/Frequency is dependent on 6, T
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Figure B6. A plot of My versus Ley; for weak jets.



What if we can’t see the emission lines?

v
v

— = Doppler-boosted jet
— = emission lines

Increasing L = Line & Jet Luminosity Increases
- Cooling Increases, v, shifts out of optical



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

