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Fig. 1.— Light curves taking into account the light travel time effect. Left: Blob of constant radius. Right: Blob expands with time.
Flux is given in arbitrary units.

Wehrle et al. (2012)
Analysis by Bonnoli et al. (2011).
Flare modeled from star-jet interaction (Khangulyan

et al. 2013).
During 2010 Nov flare, optical polarization of 40% was

reached (Sasada et al. 2014).

Jet crashes into cloud model Vittorini et al. (2014).

9. DISCUSSION

Cosimo Nigro.

APPENDIX

A. SEED PHOTON SOURCE ENERGY DENSITY

For an object with emissivity j(ϵ, Ω; R), the total luminosity is

L0 =
∫

dVex

∫ ∞

0
dϵ j(ϵ, Ωex; Rex) =

∫ ∞

0
dRexR

2
ex

∫ 2π

0
dφex

∫ 1

−1
dµex

∫ ∞

0
dϵ j(ϵ, Ωex; Rex) (A1)

and the energy density is (Böttcher & Dermer 1995; Dermer et al. 2009; Finke 2016)

uph(ϵ, Ω) =
1

4πc

∫ 2π

0
dφex

∫ 1

−1
dµex

∫ ∞

0
dRex

(
Rex

x

)2

j(ϵ, Ωex; Rex)δ(φ − φex)δ(µ − µ∗) (A2)

where

x = R2
ex + r2 − 2Rexrµex (A3)

and

µ2
∗ = 1 −

(
Rex

x

)2

(1 − µ2
ex) . (A4)

The photon number density is then

nph(ϵ, Ω) =
uph(ϵ, Ω)
ϵmec2

. (A5)

A.1. Spherical Shell
For an infinitesimally thin spherical shell emitting monochromatic photons with energy ϵ0, the geometry restricts

the emission to Rex = R0. So the emissivity is

j(ϵ, Ωex; Rex) = gL0δ(ϵ− ϵ0)δ(Rex − R0) , (A6)

where g is a geometric factor. This factor can be determined by substituting Equation (A6) in Equation (A1) and
solving for g. The result is

g =
1

4πR2
0

. (A7)

Using Equation (A2), the energy density is

u(ϵ, Ω) =
L0

(4π)2c
δ(ϵ− ϵ0)

∫ 1

−1

dµex

x2
δ(µ − µ∗) . (A8)

Justin D. Finke (US Naval Research Laboratory)

Abstract:  I begin with the standard model of a one-zone, relativistically moving, 
expanding blob in a blazar jet.  I describe two features not often taken into 
account in this type of modeling:  light travel time effects and the changing 
external radiation field, as observed in the frame of the blob.  Emission and 
electron energy loss rates are computed with the full Compton cross-section, 
taking into account the changing geometry of the external fields.  The energy loss 
rates are used to solve the full continuity equation for the electron distribution, 
which is used to compute the synchrotron and Compton-scattering emission.

I. Light Travel Time Effect
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jet
blob

photons emitted
simultaneously

observer

Consider a one-zone jet model for a blazar.  Even in this case, photons from the closer part of the blob 
reach the observer before ones from the farther part of the blob!

For non-expanding blobs, this effect was described by Chiaberge & Ghisellini (1999) and Zacharias & 
Schlickeiser (2013).  I generalize it for expanding blobs.

Consider a Dirac delta-function flare in a spherical blob of radius R.  
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Example of including this effect in a synchrotron/synchrotron self-Compton (SSC) flare model with High-
peaked BL Lac type parameters.  Constant R’, assumes δ-function electron injection at t=0.

z = 0.03
B = 0.52 G
Γ = δ = 33
R’ = 1.3 x 1015 cm

We’ = 1045 erg
γ1’ = 2 x 102

γ2’ = 2 x 105

p = 1.75

II. Electron energy loss rates

As the blob moves at high relativistic speed, the external radiation field (as seen from the blob) will change.
For a 0.1 pc broad-line region (BLR), a blob moving with Γ=30 will move out of the BLR in 3 hours. For a
1.0 pc dust torus (DT), the blob will move out of the DT in 32 hours.

Gamma-ray flares observed by Fermi often last longer than this!

jet
blob

dust torus

BLR

Different lines 
emitting at 
different radii!

observer

Detailed emission from Compton scattering of external radiation fields has been computed previously 
(Dermer et al. 2009; Finke 2016).  But one must calculate energy loss rates from Compton scattering to 
evolve the electron distribution in a self-consistent model!
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3.5. Point Source Radially Behind Jet
For a monochromatic point radiation source at the ori-

gin behind the jet’s direction of motion with luminosity
L0 (in units, e.g., erg s−1; Dermer et al. 2009; Finke 2016)

nph(ϵ, Ω) = npt(ϵ, Ω) =
L0

4πr2c

δ(µ − 1)
2π

δ(ϵ− ϵ0)
mec2ϵ

, (23)

where r is the distance between the radiation source
and the scattering nonthermal electrons. The comoving
frame mean electron energy loss rate is then

−⟨γ̇′(γ′)⟩pt =
(

L0

4πr2c

)
cσT

2mec2ϵ20

∫ 1

−1
dµ′

eS4(ϵ̄′) (24)

where now

ϵ̄′ =
γ′ϵ0(1 − βµ′

e)
Γ(1 + β)

. (25)

In the Thomson regime, ϵ̄′ ≪ 1,

−⟨γ̇′(γ′)⟩pt,T → 4
3

1
Γ2(1 + β)2

(
L0

4πr2c

)
cσTγ′2

mec2
. (26)

This Thomson regime result has been found previously
by xx.

3.6. Spherical Shell Radiation Field
Consider a spherical infinitesimally thin shell in the

stationary frame that emits photons with luminosity L0
and monochromatic energy ϵ0. The shell is centered at
the origin, where the black hole is located, and has radius
R0. The jet emitting region is still located at a distance r
from the origin. In this case, the photon number density
is given by (Appendix A)

nph(ϵ, Ω) = nshl(ϵ, Ω) =
L0

(4π)2ϵmec3
δ(ϵ− ϵ0)

×
∫ 1

−1

dµ0

x2
δ(µ − µ∗) (27)

where

x2 = R2
0 + r2 − 2rR0µ0 (28)

and θ0 = cos−1 µ0 is the angle between the line seg-
ment connecting the origin and the emitting blob the
line segment connecting the origin and a portion of the
shell. The angle between the line segment connecting the
emitting blob and the origin and the line segment con-
necting the emitting blob and a portion of the shell is
θ∗ = cos−1 µ∗. The law of sines then gives the relation-
ship

µ2
∗ = 1 −

(
R0

x

)2

(1 − µ2
0) . (29)

The comoving frame electron energy loss rate for this
radiation field is

−⟨γ̇′(γ′)⟩shl =
σTL0

2(4π)2mec2ϵ20

∫ 1

−1
dµ′

e

∫ 2π

0
dφ′

×
∫ 1

−1

dµ0

x2
S4(ϵ̄′) . (30)

Assuming the scattering region is far inside the shell,
r ≪ R0, one finds µ∗ → µ0 and

−⟨γ̇′(γ′)⟩shl,in →
(

L0

4πcR2
0

)
σTc

8πmec2ϵ20Γ2

∫ 1

−1
dµ′

e

×
∫ 2π

0
dφ′

∫ 1

−1

dµ′
0

(1 + βµ′
0)2

S4(ϵ̄′) . (31)

Comparing Equation (31) with Equation (20), one can
see that for r ≪ R0 the shell radiation field appears as
an isotropic radiation field with u0 = L0/(4πcR2

0).
If the scattering region is far outside the shell, R0 ≪ r,

then µ∗ → 1 and Equation (30) reduces to

−⟨γ̇′(γ′)⟩shl,out →
(

L0

4πr2c

)
cσT

2mec2ϵ20

∫ 1

−1
dµ′

e S4(ϵ̄′) .

(32)

which is exactly Equation (24). Thus, at large distances
from the spherical shell, it appears like a point source,
as expected.

3.7. Ring Radiation Field
Now I consider an emitting one-dimensional annulus

(ring) with luminosity L0 and radius R0 oriented or-
thogonal to the jet’s direction of motion, centered at the
origin. The origin is again a distance r from the relativis-
tically moving scattering region of interest. The emitted
photons are monochromatic with energy ϵ0. The photon
number density is (Appendix A)

nph(ϵ, Ω) = nrng(ϵ, Ω) =
L0

8π2ϵmec3x2

×δ(µ − r/x)δ(ϵ − ϵ0) (33)

where

x2 = R2
0 + r2. (34)

The mean electron energy loss rate from scattering this
radiation field is

−⟨γ̇′(γ′)⟩rng =
(

L0

4πcx2

)
cσT

4πmec2ϵ20

∫ 1

−1
dµ′

e

×
∫ 2π

0
dφ′ S4(ϵ̄′) , (35)

where here

cos ψ̄′ = µ′
0µ

′
e + (1 − µ′2

0 )1/2(1 − µ′2
e )1/2 cosφ′ , (36)

µ′
0 =

r
x − β

1 − β r
x

, (37)

and

ϵ̄′ =
γ′ϵ0(1 − βe cos ψ̄′)

Γ(1 + βµ′
0)

. (38)

In the Thomson regime, ϵ′ ≪ 1,

−⟨γ̇′(γ′)⟩rng,T → 4
3

1
Γ2(1 + βµ′

0)2

(
L0

4πcx2

)
cσTγ′2

mec2
.

(39)
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Further, if the emitting region is a short distance from
the ring, r ≪ R0, then x → R0, µ′

0 → −β,

−⟨γ̇′(γ′)⟩rng,in,T → 4
3
Γ2

(
L0

4πcR2
0

)
cσTγ′2

mec2
. (40)

Comparing this with Equation (22), and setting u0 =
L0/(4πcR2

0), one sees that for r ≪ R0 in the Thomson
regime, the energy loss rate for electrons scattering pho-
tons from a ring is a factor 2(1+β2/3) ≈ 4/3 lower than
for scattering an isotropic photon distribution.

For large distances from the ring, R0 ≪ r, x → r,
µ′

0 → 1, cosψ′ → µ′
e. Then

−⟨γ̇′(γ′)⟩rng,out,T → 4
3

1
Γ2(1 + β)2

(
L0

4πcr2

)
cσTγ′2

mec2
.

(41)

Comparing with Equation (26), one sees that in the
Thomson regime, far from an emitting ring, the energy
loss rate for scattering photons reduces to what it would
be for scattering photons from a point source.

3.8. Accretion Disk Radiation Field
Shakura-Sunyaev accretion disk around black hole of

mass MBH. The disk is oriented orthogonal to the jet and
extends from distance Rd = Rin to Rd = Rout from the
black hole. The photon number density of disk photons
is (Dermer & Schlickeiser 2002; Dermer et al. 2009; Finke
2016)

nph(ϵ, Ω) = ndisk(ϵ, Ω)

=
3

16π2ϵmec2

ℓEddLEddRg

ηR3
d

× ϕ(Rd)δ(ϵ− ϵ0(Rd)) , (42)

where

ϕ(Rd) =
√

1 − Rin

Rd
, (43)

Rg =
GMBH

c2
, (44)

and

ϵ0 = 2.7 × 10−4

(
ℓEdd

M8η

) (
R

Rg

)−3/4

. (45)

The energy loss rate from scattering accretion disk pho-
tons is

−⟨γ̇′(γ′)⟩disk =
3σTℓEddLEddRg

32π2mec2Γ2η

∫ 1

−1
dµ′

e

∫ µ′
max

µ′
min

dµ′

× ϕ(Rd)
ϵ0(1 + βµ′)2R3

d

∫ 2π

0
dφ′S4(ϵ̄′) , (46)

where

µ′
min =

µmin − β

1 − βµmin
, (47)

µ′
max =

µmax − β

1 − βµmax
, (48)

µmin =
1√

1 + (Rout/r)2
, (49)

and

µmax =
1√

1 + (Rin/r)2
. (50)

3.9. Broad Line Region
See Finke (2016) model.
See paper by Zajaček et al. (2020).

4. OTHER ENERGY LOSS RATES

4.1. Synchrotron

−⟨γ̇′(γ′)⟩sy =
4cσTuBγ′2

3mec2
. (51)

where u′
B = B′2/(8π).

4.2. Adiabatic Expansion

−⟨γ̇′(γ′)⟩ad =
dV ′

b

dt′
1
V ′

b

γ′

3
. (52)

Using Equation (4), this can be written as

−⟨γ̇′(γ′)⟩ad =
aγ′

r0/(βc) + t
. (53)

4.3. Synchrotron self-Compton
The number density of photons produced in the emit-

ting region from synchrotron emission per unit photon
energy and volume is (e.g., Finke et al. 2008)

n′
ph(ϵ′) =

3
√

3e3B′

4πR′2
b ϵ

′2hmec3
Iγ(ϵ′, B′) (54)

where

Iγ(ϵ′, B′) =
∫ ∞

1
dγ′′Ne(γ′′; t′)RCS

(
4πϵ′m2

ec
3

3eB′hγ′′2

)
. (55)

The function RCS(x) is defined by Crusius & Schlickeiser
(1986), and approximations are given by Zirakashvili
& Aharonian (2007); Finke et al. (2008); and Joshi &
Böttcher (2011). The mean SSC energy loss rate is then
‘

−⟨γ̇(γ)⟩SSC =
3
√

3e3B′σT

2(4π)2R′2
b hmec2

∫
dϵ′

ϵ′2
Iγ(ϵ′, B′)FSSC(γ′ϵ′) ,

(56)

where

FSSC(x) =
∫ 1

−1
dµ′

e

∫ 2π

0
dφ′

∫ 1

−1
dµ′S4[x(1 − cosψ′)] .

(57)

In the Thomson regime, x(1 − cosψ′) ≪ 1, and

FSSC(x) → 104
9
πx2 . (58)

Compare with Böttcher et al. (1997).
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Further, if the emitting region is a short distance from
the ring, r ≪ R0, then x → R0, µ′

0 → −β,

−⟨γ̇′(γ′)⟩rng,in,T → 4
3
Γ2

(
L0

4πcR2
0

)
cσTγ′2

mec2
. (40)

Comparing this with Equation (22), and setting u0 =
L0/(4πcR2

0), one sees that for r ≪ R0 in the Thomson
regime, the energy loss rate for electrons scattering pho-
tons from a ring is a factor 2(1+β2/3) ≈ 4/3 lower than
for scattering an isotropic photon distribution.

For large distances from the ring, R0 ≪ r, x → r,
µ′

0 → 1, cosψ′ → µ′
e. Then

−⟨γ̇′(γ′)⟩rng,out,T → 4
3

1
Γ2(1 + β)2

(
L0

4πcr2

)
cσTγ′2

mec2
.

(41)

Comparing with Equation (26), one sees that in the
Thomson regime, far from an emitting ring, the energy
loss rate for scattering photons reduces to what it would
be for scattering photons from a point source.

3.8. Accretion Disk Radiation Field
Shakura-Sunyaev accretion disk around black hole of

mass MBH. The disk is oriented orthogonal to the jet and
extends from distance Rd = Rin to Rd = Rout from the
black hole. The photon number density of disk photons
is (Dermer & Schlickeiser 2002; Dermer et al. 2009; Finke
2016)

nph(ϵ, Ω) = ndisk(ϵ, Ω)

=
3

16π2ϵmec2

ℓEddLEddRg

ηR3
d

× ϕ(Rd)δ(ϵ− ϵ0(Rd)) , (42)

where

ϕ(Rd) =
√

1 − Rin

Rd
, (43)

Rg =
GMBH

c2
, (44)

and

ϵ0 = 2.7 × 10−4

(
ℓEdd

M8η

) (
R

Rg

)−3/4

. (45)

The energy loss rate from scattering accretion disk pho-
tons is

−⟨γ̇′(γ′)⟩disk =
3σTℓEddLEddRg

32π2mec2Γ2η

∫ 1

−1
dµ′

e

∫ µ′
max

µ′
min

dµ′

× ϕ(Rd)
ϵ0(1 + βµ′)2R3

d

∫ 2π

0
dφ′S4(ϵ̄′) , (46)

where

µ′
min =

µmin − β

1 − βµmin
, (47)

µ′
max =

µmax − β

1 − βµmax
, (48)

µmin =
1√

1 + (Rout/r)2
, (49)

and

µmax =
1√

1 + (Rin/r)2
. (50)

3.9. Broad Line Region
See Finke (2016) model.
See paper by Zajaček et al. (2020).

4. OTHER ENERGY LOSS RATES

4.1. Synchrotron

−⟨γ̇′(γ′)⟩sy =
4cσTuBγ′2

3mec2
. (51)

where u′
B = B′2/(8π).

4.2. Adiabatic Expansion

−⟨γ̇′(γ′)⟩ad =
dV ′

b

dt′
1
V ′

b

γ′

3
. (52)

Using Equation (4), this can be written as

−⟨γ̇′(γ′)⟩ad =
aγ′

r0/(βc) + t
. (53)

4.3. Synchrotron self-Compton
The number density of photons produced in the emit-

ting region from synchrotron emission per unit photon
energy and volume is (e.g., Finke et al. 2008)

n′
ph(ϵ′) =

3
√

3e3B′

4πR′2
b ϵ

′2hmec3
Iγ(ϵ′, B′) (54)

where

Iγ(ϵ′, B′) =
∫ ∞

1
dγ′′Ne(γ′′; t′)RCS

(
4πϵ′m2

ec
3

3eB′hγ′′2

)
. (55)

The function RCS(x) is defined by Crusius & Schlickeiser
(1986), and approximations are given by Zirakashvili
& Aharonian (2007); Finke et al. (2008); and Joshi &
Böttcher (2011). The mean SSC energy loss rate is then
‘

−⟨γ̇(γ)⟩SSC =
3
√

3e3B′σT

2(4π)2R′2
b hmec2

∫
dϵ′

ϵ′2
Iγ(ϵ′, B′)FSSC(γ′ϵ′) ,

(56)

where

FSSC(x) =
∫ 1

−1
dµ′

e

∫ 2π

0
dφ′

∫ 1

−1
dµ′S4[x(1 − cosψ′)] .

(57)

In the Thomson regime, x(1 − cosψ′) ≪ 1, and

FSSC(x) → 104
9
πx2 . (58)

Compare with Böttcher et al. (1997).

r << R0 reduces to isotropic field:

r >> R0 reduces to point 
source behind jet:

Thomson regime approximations:
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The Klein-Nishina energy depends on blob 
distance from black hole (r0)!  So one cannot 
simply scale the energy loss rate with 
radius!  The detailed calculation is needed to 
accurately include the energy loss rate.

Once dγ/dt is known, one can evolve the 
electron distribution:

Then compute the time-dependent emission, 
taking into account the light travel time effect 
and changing radiation field!
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5. ELECTRON EVOLUTION

The evolution of the electron distribution is governed
by a continuity equation,

∂N ′
e(γ′; t′)
∂t′

+
∂

∂γ′
[⟨γ̇′(γ′)⟩totN ′

e(γ
′; t′)]

+
N ′

e(γ′; t′)
t′esc

= Q′(γ′, t′) , (59)

where note that everything is in the comoving frame.
Electrons are injected as a power-law at t = 0, so that

Q′(γ′, t′) = Q0γ
′−qδ(t′)H(γ′; γ′1, γ

′
2) . (60)

The total injected energy is

W ′
e = mec

2Q0

∫ γ′
2

γ′
1

dγ′γ′γ′−q . (61)

This defines the normalization,

Q′
0 =

W ′
e

mec2Ie(q, γ′1, γ′2)
(62)

where

Ie(q, γ′1, γ
′
2) =

{
(γ′2−q

1 − γ′2−q
2 )/(q − 2) for q ̸= 2

ln(γ′2/γ′1) for q = 2 .

(63)
I use an escape timescale given by

t′esc = kesc
R′

b(t
′)

c
, (64)

where the constant kesc ≥ 1.
I solve this equation with an implicit finite differenc-

ing scheme (e.g., Chang & Cooper 1970). This involves
inverting a tri-diagonal matrix, which is done using the
tridag routine from Press et al. (2001).

6. EMISSION

6.1. Light Travel Time
Consider a homogeneous “one zone” blob. If the emis-

sion of the entire blob is changing simultaneously, the
observer will see the portion of the blob closer to the
observer before the portion of the blob that is farther
away. This effect was explored by Chiaberge & Ghis-
ellini (1999) and described by Zacharias & Schlickeiser
(2013) for a spherical blob (see also Finke & Becker 2014,
2015). Here I explore this effect for an expanding spher-
ical blob, which, to the best of my knowledge, has not
been explored before. Initially I assume the observer is
in the rest frame of the blob below.

For a non-expanding spherical blob with constant ra-
dius Rb with time series light curve F (t), the observed
flux as a function of the observer’s time tobs is (Zacharias
& Schlickeiser 2013; Finke & Becker 2015)

Fobs(tobs) =
3c

Rb

∫ 2Rb/c

0
dtF (tobs − t)

[
tc

2Rb
−

(
tc

2Rb

)2
]

.

(65)

I can let F (t) → δ(t − t0), so that Equation (65) defines
a Green’s Function (Fobs(tobs) → G(tobs, t0)) for the ob-

served flux for an expanding blob,

Fobs(tobs) =
∫ tobs

0
dt0 G(tobs, t0) F (t0) , (66)

where again F (t) is some time series light curve. This
results in

G(tobs, t0) =
3c

Rb(t0)

[
(tobs − t0)c

2Rb(t0)
−

(
(tobs − t0)c

2Rb(t0)

)2
]

×H

(
tobs − t0; 0,

2Rb(t0)
c

)
, (67)

and, substituting Equation (67) in Equation (66),

Fobs(tobs) =
∫ tobs

0
dt0

3c

Rb(t0)
F (t0)

×
[

(tobs − t0)c
2Rb(t0)

−
(

(tobs − t0)c
2Rb(t0)

)2
]

×H

(
tobs − t0; 0,

2Rb(t0)
c

)
. (68)

This describes the observed light curve Fobs(tobs) for an
expanding homogeneous spherical blob with radius that
changes with time as Rb(t0) and emits flux as a function
of time as F (t0).

xx discuss shift to observer frame?
An example of the light travel time effect is shown in

Figure 1. Here I use a step function of width 1.25 ×
103 s as the intrinsic flux F (t0) to approximate a Dirac
δ-function. The left side of this figure shows the light
curve for blob of constant radius Rb. As expected, the
light curve is symmetric and spread out over longer time
for larger radii; indeed, the emission should extend from
tobs = 0 to tobs = 2Rb/c, peaking at Rb/c. [Why don’t
the light curves do this?]

More sophisticated ways of exploring light travel time
effects have been done by Joshi & Böttcher (2011).

As I described previously (Finke 2016), for flares that
occur from a blob in the BLR or dust torus, I thought
that the blob would move outside of the emitting region
rapidly, too rapidly to explain most blazar flares. How-
ever, I no longer believe this is the case. This is because
of the light travel time effect described here. Even if the
blob’s emission decreases rapidly due to leaving the emit-
ting region, the emission will still be spread out in time
due to its finite size.

7. FLARE MODEL

Magnetic field

B′ =

√
8πW ′

B

V ′
b

(69)

I assume the energy W ′
B is conserved, so that the mag-

netic field goes as B′ ∝R−3/2
b .

8. 2010 NOVEMBER FLARE FROM 3C 454.3

Data from Vercellone et al. (2011); Abdo et al. (2011)
Time-dpeendent leptonic and lepto-hadronic modeling

by Diltz & Boettcher (2016).


