Connecting turbulent velocities and magnetic fields in galaxy cluster simulations with active galactic nuclei jets

Kristian Ehlert, Christoph Pfrommer (AIP, Potsdam) Rainer Weinberger (CfA) Volker Springel (MPA, Garching) May, 2021

Perseus Cluster

X-ray (Chandra composite) and optical (Blackbird observatory) images of the Perseus cluster (adopted from Fabian et al., 2011)

Motions ubiquitous in clusters

Gradient filtering edge detection enhances shocks and ripples in X-ray image of Perseus (Sanders et al., 2016)

Cooling flow problem

- Observationally; $t_{
 m cool} \ll t_{
 m Hubble}$
- Clusters self-regulated through jets; exemplified in M87 and MS0735 (Fabian, 2012)
- Heating mechanism unclear

Cooling flow problem

- Observationally; $t_{
 m cool} \ll t_{
 m Hubble}$
- Clusters self-regulated through jets; exemplified in M87 and MS0735 (Fabian, 2012)
- Heating mechanism unclear
- Ideas related to velocities:
 - turbulence dissipation
 - decay of sound waves
 - shock heating
 - mixing of hot bubble material
- Magnetic field significant impact on plasma scale details of most heating mechanisms

Cluster motions observed with X-ray satellite Hitomi

Bulk velocity (left) and velocity dispersion in $\rm km\,s^{-1}$ of the ICM in a central region of Perseus measured by *Hitomi* (Hitomi Collaboration, 2018)

Magnetic field modelling with Faraday rotation measure

RM images of radio sources within a galaxy cluster (Feretti et al., 1999; Beresnyak, 2019)

• Evolution of magnetic field given by induction equation

$$\frac{\partial \mathsf{B}}{\partial t} = -\mathsf{v} \cdot \nabla \mathsf{B} + \mathsf{B} \cdot \nabla \mathsf{v} - \mathsf{B} \nabla \cdot \mathsf{v} + \eta \nabla^2 \mathsf{B}$$

- Change of B = advection + stretching + compression + dissipation of field
- Evolution of velocity field given by

$$\frac{\partial \mathsf{v}}{\partial t} = -\mathsf{v} \cdot \nabla \mathsf{v} - \frac{\nabla p}{\rho} - \nabla \Phi + \frac{1}{4\pi\rho} \left[\mathsf{B} \cdot \nabla \mathsf{B} - \frac{1}{2} \nabla \left(\mathsf{B}^2\right)\right], \quad (1)$$

 Evolution of velocity = advection + pressure force + gravity + magnetic tension + magnetic pressure • Want to study inherent link between turbulent velocities and magnetic fields in ICM, as so far mostly discussed in separate contexts only

- Want to study inherent link between turbulent velocities and magnetic fields in ICM, as so far mostly discussed in separate contexts only
- Impact of AGN on ICM velocity structure unclear

- Want to study inherent link between turbulent velocities and magnetic fields in ICM, as so far mostly discussed in separate contexts only
- Impact of AGN on ICM velocity structure unclear
- Focus on simple setup of decaying turbulence:
 - idealized cluster with turbulent magnetic field
 - high density contrast jets filled with CRs

Bubble dynamics

115.0 Myr

Overview of simulation

Fiducial jet in turbulent magnetized cluster

Jet little impact on cluster turbulence

Jet little impact on cluster turbulence

Hitomi view on simulations

Mock *Hitomi* measurements of mean velocity field and velocity dispersion in $\rm km\,s^{-1}$ for NoJet, Fiducial and NoTurb.

Velocity dispersion \propto magnetic field strength

- Direct link between magnetic field strength and cluster velocity fields
- Sophisticated simulations may directly relate magnetic field strength to velocity dispersion and vice versa
- Jet-induced velocities negligible
- Hitomi observes turbulence that is not caused by AGN

References

Beresnyak, A.: 2019, Living Reviews in Computational Astrophysics 5(1)

- Ehlert, K. et al: 2019, The Astrophysical Journal Letters 872(1), L8
- Fabian, A.C.: 2012, Annual Review of Astronomy and Astrophysics 50(1), 455
- Fabian, A.C. et al: 2011, Monthly Notices of the Royal Astronomical Society 418(4), 2154

Feretti, L. et al: 1999, Astronomy and Astrophysics 344(2), 472

- Hitomi Collaboration: 2018, Publications of the Astronomical Society of Japan **70(2)**, 9
- Sanders, J.S. et al: 2016, Monthly Notices of the Royal Astronomical Society 460(2), 1898