

The LOFAR (and X-ray) view of extragalactic jet populations

Judith Croston

Thanks to Beatriz Mingo, Judith Ineson, Brendan Webster, Bonny Barkus + LOFAR surveys team

Image from the data presented in Sabater+ 2021 A&A 648 2

Internal conditions and environments from X-rays

The Oper Jniversit

Ineson, JC+ 2015 MNRAS 453 2682 & 2017 MNRAS 467 1586

Morphology and internal conditions

LOFAR extragalactic surveys

DR1 Shimwell+ 2019 A&A 622 1

424 deg² 300,000 sources 51% with redshifts

5635 deg² 4.4 million sources

Resolved jet structures in LoTSS

Group/cluster environments

8475 RL AGN matched with SDSS groups/clusters = 900 jet/cluster associations

0.40 0.35 0.30 Cluster match fraction 0.20 0.15 0.10 0.05 radio luminosity 0.00 -22 23 24 25 26 27 log_{10} (150-MHz luminosity / W Hz⁻¹) 0.40 0.35 0.30 match fraction 0.25 0.20 Cluster 0.15 0.10 -* size 0.05 0.00 101 10^{2} 10³ log10 (Size / kpc)

Revisiting the FR paradigm with LOFAR

Revisiting the FR paradigm with LOFAR

Mingo et al. 2019 MNRAS 488 2701

How does environment affect low-power jets?

LOFAR deep fields dataset: **Tasse+ 2021** A&A 648 1 **Sabater+ 2021** A&A 648 2 **Kondapally+ 2021** A&A 648 2 **Duncan+ 2021** A&A 648 4 Catalogues and images at www.lofar-surveys.org/deepfields.html

Low-power jets are 2-3x more likely to be an FRI than an FR2.

But probability of FR2 morphology increases at low stellar mass.

unrelated to accretion mode

Accretion mode and morphology in LOFAR deep fields

	HERG (RE)	LERG (RI)
FRII high	24 (35%)	45 (65%)
FRII low	5 (9%)	52 (91%)
FRII all	29 (24%)	96 (76%)
FRI	7 (4%)	153 (96%)
Small/unresolved RLAGN	1225 (8%)	13,215 (92%)

+ see Webster, JC+ 2021 MNRAS 500 4921 for more on small jets in LOFAR surveys

Summary

- Deep, representative sample X-ray studies demonstrate a physical difference in FRI and FRII particle content, best explained by entrainment in FRIs.
- LOFAR surveys reveal a new population of low-luminosity FRIIs
- The evolution of low-power jets (i.e. whether FRI or low-luminosity FRII) linked to stellar mass and not accretion mode.
- Accretion mode is decoupled from jet and lobe dynamics and appearance: luminous jets can be RI or RE irrespective of morphology, while low-luminosity jets are typically RI.
- LOFAR catalogues and images, including 6000 morphologically classed radio galaxies, and 900 jet/cluster associations, at www.lofar-surveys.org

Image from the data presented in Sabater+ 2021 A&A 648 2

Hardcastle & Croston 2020 NewRevAst, 88 (arXiv:2003.06137)