Analytical Model of Magnetically Dominated Jet:

- jet launching, acceleration and collimation

Liang Chen
Shanghai Astronomical Observatory, CAS
chenliang@shao.ac.cn

collaborator: Bing Zhang

Jets: evolution

- stage I:

- collimating
- accelerating

stage III	stage II	S	t a	$g \mathrm{e}$	I
a	b	c	d	e	f
		1			
	$\overline{\text { soope }}$	$\frac{\text { \% }}{20 \mathrm{pc}}$	$\overline{0.5 \mathrm{pc}}$	$\stackrel{\text { 0.05 pec }}{ }$	$\xlongequal{\text { 0.00s } \mathrm{pe}}$

- "parabolic"
- stage II:
- "collimating"
- "conical"
- "stage III"
- terminal, lobe

Jets: stage I: magnetically dominated \Rightarrow "force-free"

$$
\begin{array}{cc}
\mathbf{B}=\frac{1}{r^{2} \sin \theta} \frac{\partial \Psi}{\partial \theta} \hat{\mathbf{r}}-\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r} \hat{\theta}+\frac{\Phi}{r \sin \theta} \hat{\phi} & \frac{\mathbf{j}}{\sigma_{\mathrm{c}}}=\mathbf{E}+\mathbf{v} \times \mathbf{B} \xlongequal{\text { ideal MHD }} 0 \\
\Psi=r \sin \theta A_{\phi} \quad \boxed{\Phi}=r \sin \theta B_{\phi} & \rho(\mathbf{u} \cdot \nabla) \mathbf{u}=\rho_{\mathrm{e}} \mathbf{E}+\mathbf{j} \times \mathbf{B} \xlongequal{\text { force free }} 0 \\
\mathbf{B}=\nabla \times \mathbf{A} & \square
\end{array}
$$

$$
\begin{gathered}
\frac{\partial^{2} \Psi}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} \Psi}{\partial \theta^{2}}-\frac{\cot \theta}{r^{2}} \frac{\partial \Psi}{\partial \theta} \\
+\Phi^{\prime} \Phi-\left\{\frac{\Omega^{\prime}}{\Omega}\left[\left(\frac{\partial \Psi}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial \Psi}{\partial \theta}\right)^{2}\right]+\frac{\partial^{2} \Psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \Psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Psi}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial \Psi}{\partial \theta}\right\}(\Omega r \sin \theta)^{2}=0
\end{gathered}
$$

the "pulsar" equation (established 1960s)

Jets: solve equation

- simulation: BH rotating slow or fast produce similar jet configuration (e.g., Tchekhovskoy, McKinney \& Narayan 2008)
- math expect: two terms (equations): non-rotating and rotating

$$
\begin{array}{|lc|}
\hline \text { non-rotating } & \frac{\partial^{2} \Psi}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} \Psi}{\partial \theta^{2}}-\frac{\cot \theta}{r^{2}} \frac{\partial \Psi}{\partial \theta}=0 \\
\hline \text { rotating } \frac{\Phi^{\prime} \Phi}{\Omega^{2} r^{2} \sin ^{2} \theta}-\left\{\frac{\Omega^{\prime}}{\Omega}\left[\left(\frac{\partial \Psi}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial \Psi}{\partial \theta}\right)^{2}\right]+\frac{\partial^{2} \Psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \Psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Psi}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial \Psi}{\partial \theta}\right\}=0 \\
\hline
\end{array}
$$

- The two solutions match each other!

Jets: solve equation

$$
\begin{aligned}
& \Psi=r^{\nu} T_{\mathrm{nr}}(\theta) \quad 0 \leq \nu \leq 2 \\
& T_{\mathrm{nr}}(\theta)=C_{2} y{ }_{2} F_{1}\left(1-\frac{\nu}{2}, \frac{1}{2}+\frac{\nu}{2}, 2, y\right) \\
& T_{\mathrm{r}}(y)=A_{2} e^{\frac{\nu}{s+\nu} \int_{1}^{y} \frac{G_{1}(t)+A_{1} G_{2}(t)}{A_{1} G_{3}(t)+G_{4}(t)} d t}
\end{aligned}
$$

non-relativistic to relativistic regimes
apply: $\quad \theta \ll 1$ or $\theta \rightarrow \pi / 2$

$$
\Omega r \sin \theta \gg 1 \text { or } \Omega r \sin \theta \ll 1
$$

Chen \& Zhang 2021

Jets: magnetic field and velocity

- magnetic field

$$
\begin{aligned}
B_{p} & =\frac{2 \Psi}{R^{2}} \\
B_{\phi} & =-\frac{2 \Omega \Psi}{R}
\end{aligned}
$$

- drift velocity \Leftrightarrow cold plasma velocity $D_{\mathrm{fd}} \equiv \frac{(v \Gamma)^{2}-\left(v_{\mathrm{d}} \Gamma_{\mathrm{d}}\right)^{2}}{\left(v_{\mathrm{d}} \Gamma_{\mathrm{d}}\right)^{2}} \ll 1 \quad(\Omega R \gg 1$ or $\Omega \mathrm{R} \ll 1)$
- velocity

$$
\begin{aligned}
v_{\phi} & =\Omega r \sin \theta \frac{B_{p}^{2}}{B^{2}} \approx \frac{\Omega R}{1+(\Omega R)^{2}}, \\
v_{p} & =-\Omega r \sin \theta \frac{B_{\phi} B_{p}}{B^{2}} \approx \frac{(\Omega R)^{2}}{1+(\Omega R)^{2}}, \\
v & =\Omega r \sin \theta \frac{B_{p}}{B} \approx \frac{\Omega R}{\sqrt{1+(\Omega R)^{2}}}, \\
v \Gamma & \approx \Omega R .
\end{aligned}
$$

Chen \& Zhang 2021

Jets: acceleration and collimation

- configuration : (quasi- parabolic at $\theta \ll 1$)

$$
\Psi=C r^{\nu} \sin ^{2} \theta{ }_{2} F_{1}\left(1-\frac{\nu}{2}, \frac{1}{2}+\frac{\nu}{2}, 2, \sin ^{2} \theta\right) \quad \Rightarrow \quad R=C_{2}^{-1 / 2} \Psi^{1 / 2} z^{1-\nu / 2}
$$

- acceleration: stages I, II, III (non-relativistic to relativistic)

$$
\frac{1}{(v \Gamma)^{2}} \simeq \frac{1}{(\Omega R)^{2}}+\frac{2-\nu}{4(c / \theta)^{2}}
$$

- spine/layer jet

$$
v \Gamma=\Omega R
$$

- hollow jet (for a BZ jet)

$$
S_{z}=\frac{B_{\phi}^{2}}{4 \pi}=\frac{C_{2}}{\pi} \Omega^{2} \Psi r^{\nu-2}=\frac{C_{2}^{2 / \nu}}{\pi} \Omega^{2} \Psi^{2-2 / \nu} \theta^{-2+4 / \nu}=\frac{\alpha^{2}}{\pi} C_{2}^{2 \lambda+2} z^{2 \lambda \nu+2 \nu-4 \lambda-4} R^{4 \lambda+2}
$$

Chen \& Zhang 2021
Consist with previous asymptotic results at ultra-relativistic regime (Blandford, Narayan, Tchekhowskoy, Beskin, Komissarov, Lyubarsky, …)

Jets: current and charge

- electric current

$$
J=\sqrt{c P_{\mathrm{jet}}} \approx 5.8 \times 10^{17} \sqrt{P_{44}} \mathrm{~A}
$$

- electric potential difference ("gap" near BH horizon)

$$
\Delta V=\sqrt{P_{\mathrm{jet}} / c} \approx 1.7 \times 10^{19} \sqrt{P_{44}} \text { Volts }
$$

- black hole charge

$$
r_{\mathrm{Q}}=\sqrt{G} Q / M \approx \sqrt{G P_{\mathrm{jet}} / c^{5}} \approx 1.7 \times 10^{-8} \sqrt{P_{44}}
$$3C 303

$\sim 3.9 \times 10^{18} \mathrm{~A} \quad$ Kronberg et al. 2011
$\sim 1.0 \times 10^{46} \mathrm{erg} \mathrm{s}^{-1} \quad$ Zhang et al. 2018

Chen \& Zhang 2021
Consist with previous asymptotic results at ultra-relativistic regime (Blandford, Narayan, Tchekhovskoy, Beskin, Komissarov, Lyubarsky, …)

Thanks!

