Analytical Solution of Magnetically Dominated Astrophysical Jets

— Jet Launching, Acceleration, and Collimation (Chen & Zhang, 2021, ApJ, 906, 105)

Liang CHEN: chenliang@shao.ac.cn Shanghai Astronomical Observatory, CAS Shanghai 200030, China

Part I. Solve Equation

Jet configuration \iff the radial balance equation

The solutions of these two term equations are matching each other very well.

 $\Psi = Cr^{\nu} \sin^2 \theta \,_2 F_1 \left(1 - \frac{\nu}{2}, \frac{1}{2} + \frac{\nu}{2}, 2, \sin^2 \theta \right) \quad \left(0 \le \nu \le 2 \right)$

Part II. Jet Properties

- 1. Jet configuration: (quasi-parabolic at $\theta \ll 1$) $\Psi = Cr^{\nu} \sin^2 \theta \,_2 F_1 \left(1 - \frac{\nu}{2}, \frac{1}{2} + \frac{\nu}{2}, 2, \sin^2 \theta \right) \quad \Longrightarrow \quad R = C^{-1/2} \Psi^{1/2} z^{1-\nu/2}$
- to relativistic 2. Drift velocity well match cold plasma jet velocity

- 3. Jet acceleration: stages |, || (non-relativistic to relativistic) $\frac{1}{(v\Gamma)^2} \simeq \frac{1}{(\Omega R)^2} + \frac{2-\nu}{4(c/\theta)^2}$ 4. For a BZ jet (jet power $P_{jet} = P_{44} \times 10^{44} \text{ erg s}^{-1}$): jet electric current $\longrightarrow J = \sqrt{cP_{\text{jet}}} \approx 5.8 \times 10^{17} \sqrt{P_{44}} \text{ A}$
 - electric potential difference ("gap") black hole charge $\Delta V = \sqrt{P_{\rm jet}/c} \approx 1.7 \times 10^{19} \sqrt{P_{44}}$ Volts $r_{\rm Q} = \sqrt{G}Q/M \approx \sqrt{GP_{\rm jet}/c^5} \approx 1.7 \times 10^{-8} \sqrt{P_{44}}$

Consist with previous asymptotic results at ultra-relativistic regime (Blandford, Narayan, Tchekhovskoy, Beskin, Komissarov, Lyubarsky, ...)

non-

relativistic