



# Thermal radiative losses in high-mass microquasars jets

## Arthur CHARLET

CRAL - LUPM

June 2021

R. Walder, A. Marcowith, D. Folini, M. Dieckmann, J. Favre







Arthur CHARLET (CRAL - LUPM)

# HMMQ jets



Cygnus X-1 @1.4 GHz (Gallo *et al.* 2005) Structure spans  ${\sim}15$  ly

### Context:

binary star systems jet ( $\beta \sim 0.1-0.9$ ) into stellar wind emission from radio to gamma

### Aims:

large scales ( $\sim 10^{14}$  cm) long times (quasi stationary state) role of cooling and system parameters

### Methods:

3D relativistic hydrodynamics thermal radiative losses AMR

### Challenge:

months long simulation times

# Cygnus X-1 vs Cygnus X-3

Parameters choice:

Cygnus X-1: Orosz *et al.* 2011, Yoon & Heinz 2015 Cygnus X-3: Zdziarski *et al.* 2013, Dubus *et al.* 2010

|           | Cyg X-1           | Cyg X-3           | unit          |
|-----------|-------------------|-------------------|---------------|
| star type | O9-B              | WN 4-6            |               |
| $M_{co}$  | 15                | $\lesssim$ 5      | $M_{\odot}$   |
| $d_{orb}$ | $3\cdot 10^{12}$  | $2.7\cdot10^{11}$ | cm            |
| Ň         | $3 \cdot 10^{-6}$ | $10^{-5}$         | <i>M</i> ⊙/yr |
| Vw        | 1000              | 1500              | km/s          |
| $L_j$     | $5 \cdot 10^{36}$ | 10 <sup>38</sup>  | $erg s^{-1}$  |
| $\beta_j$ | 0.33              | 0.75              |               |

Cygnus X-3:

- $\rightarrow$  more compact system, stronger wind
- $\rightarrow$  hotter star, stronger B field
- $\rightarrow$  denser, faster, more energetic jet
  - $\Rightarrow$  stronger losses expected



### Methods

## Code and physics

Simulations with A-MaZe toolkit (Walder & Folini 2000, 2003):

- finite volume method
- forward Euler scheme
- 2nd order Lax-Friedrich
- min-mod limiter

Relativistic hydrodynamics:

$$\partial_t D + \partial_i (Dv^i) = 0$$

$$\frac{\partial_t S^j + \partial_i (S^j v^i + pc^2 \delta^{ij}) = 0}{\partial_t \tau + \partial_i S^i = -P_{loss}}$$
(2)

 $\rho_j$ ,  $v_j$ ,  $T_j$  at injection x=0 reflecting conditions outflow elsewhere

coarse grid:  $250 \times 200 \times 200$  cells  $\sim 7 \times 5 \times 5$  AU (1)  $dx = dy = dz = 4 \cdot 10^{11}$  cm

<sup>2)</sup> fixed grid centered on jet for performance 3) 5 levels up to  $\times 64$  refinement where jet is launched

Relativistic solver with recovery of primitive variables

First simulations including relativistic hydrodynamics *and* large scales First implementation of radiative loss effects in jet dynamics

Arthur CHARLET (CRAL - LUPM)

#### Methods

## Radiative losses

free-free + relativistic correction (Rybicki & Lightman
1979):

$$P_{\rm ff} \propto \rho^2 T^{1/2} g_{\rm ff}(T) (1 + \frac{T}{10^{10} \text{ K}}) \tag{4}$$

 $g_{ff}$  frequency-averaged Gaunt factor  $g_{ff} = 1.2$  in CygX1 runs  $g_{ff}(T)$ , van Hoof *et al.* 2015 for CygX3

synchrotron and inverse Compton derived from Maxwell-Jüttner for  $e^-$ :

$$P_{syn, IC} \propto \gamma \rho T \frac{K_3}{K_2} \left( T^{-1} \right) U_{B, rad}$$
(5)

line recombination, Cook et al. 89:

$$P_{line} \propto \rho^2 \Lambda(T) T^{\beta(T)}, \ T < 10^{7.7} \ {
m K}$$
 (6)



 ${\cal P}_{\rm rad}(\,{\cal T})$  for typical CygX3 cocoon values,  $\rho=10^{-14}~{\rm g~cm^{-3}},~\gamma=1$ 

## Fiducial runs



Arthur CHARLET (CRAL - LUPM)

## Parametric study



 $\rightarrow$  beam temperature matters for stability



Arthur CHARLET (CRAL - LUPM)

Rad. losses in HMMQ jets

June 2021 7/11

# Cooled vs adiabatic



Cygnus X-1:  $t_{cool} > t_{dyn}$ , barely any effects Cygnus X-3:  $t_{cool} < t_{dyn}$  $\rightarrow$  focus on Cygnus X-3 case



# Cooled vs adiabatic (2)





 $\rightarrow$  faster KHI growth

Arthur CHARLET (CRAL - LUPM)

# Cooled vs adiabatic (3)



 $\rightarrow$  expansion becomes self-similar

outer cocoon:

 $\rightarrow$  smaller in cooled jet but same law inner cocoon:

 $\rightarrow$  slightly stronger slope for non-cooled jet beam:

 $\rightarrow$  strong difference in behaviour

## Conclusions and prospects

### Conclusions

- First large scale relativistic study of cooling in HMMQ jet outbreaks
- ▶ Weak to no effects on Cygnus X-1, structural and dynamical modifications for Cygnus X-3
- > Parameter dependence of quantities (e.g. temperature pdf, self-similarity power laws...)

(paper to be submitted : A. Charlet et al. 2021)

### Prospects

- Study steady-state structure
- Compute synthetic thermal and non-thermal emission spectra