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Abstract

Astrophysical jets are observed as stable structures, extending in lengths
several times their radii. The role of various instabilities and how they
affect the observed jet properties has not been fully understood. Using
the ideal relativistic MHD equations to describe jet dynamics we aim to
study the stability properties through linear analysis. Our jets’ physical
quantities are defined by the acceleration and collimation processes near
the central object that generates the outflow. So, the distribution of each
quantity carries the signature of the processes taking place at the early
stages of jet propagation. In order to find the growth rates for the insta-
bilities we solve numerically the perturbed system. We find connections
between growth rates and various characteristic parameters such as mag-
netization, as well as the underlying dominating physical mechanism that
trigger the instabilities, whether it is a matter- or magnetic field-dominated
process.

1. Theoretical framework

• Two main categories of instabilities:
Kelvin–Helmholtz type → shear velocity profile or fluids in contact with
different velocities(e.g. some solutions in [2]).
Current–driven→ helical magnetic field (e.g. in [1])
Stability properties of outflows through a linear stability analysis.

• Jet dynamics described by ideal relativistic magnetohydrodynamics
(RMHD).

• Jets have to be in force equilibrium along the radial direction, i.e., the
radial component of the momentum equation must be satisfied:

γρ0 (v · ∇) (ξγv) = −∇P +
J0E + J×B

c
(1)

where, γ is the Lorentz factor, v the bulk flow velocity, ρ0 is the proper

density and ξ = 1 +
Γ

Γ− 1

P

ρ0c2
is the specific enthalpy. Also, P is the

thermal pressure, J0/c, J are the electric charge and current densities,
and finally E ,B the electric and the magnetic fields.

• Jets are in equilibrium with their environment, which is assumed to be a
stationary unmagnetized medium.

• Small perturbations are of the form:
δQ = Q1($)exp [i (mφ + kz − ωt)], with |Q1| � |Q0|.

•ω = <ω + i=ω ∈ C. This leads to a time–dependent amplitude for the
perturbations. Whenever =ω > 0 we have an unstable mode with growth

timescale
1

=ω
.

• The final linearized set of equations is a 2x2 first order complex differen-
tial equation system.

• Our main goal is to find the dispersion relation of the system, ω = ω(k).

2. Jet models

Model is cylindrical, steady–state and axisymmetric, so the unperturbed
physical quantities depend only on the cylindrical radius $. The special
point of this study is that the physical quantities’ functional dependence on
the radius is shaped by the acceleration and collimation processes near
the central object that creates the outflow [3, 4].
As for the physical quantities we assume a slowly cold rotating jet, i.e.
ξ = 1 ⇒ P = 0. Hence, the total pressure (Π) is related only to the

magnetic fields through the relation Π =
B2 − E2

2
≡ F

2
.

The functional behavior of the physical quantities is summarised below:

γ =

{
γa, $ � $j

γb, $ ' $j

υφ� υz

Bz ∝

{
b1, $ � $j

1/$, $ ' $j

Bφ ∝

{
$, $ � $j

1/$, $ ' $j

where γa > γb, b1 are constants. The methodology we used demands
that the configurations obey Ferraro’s law and the radial component of (1)
below:

χ = υφ −
υzBφ

Bz
(2)

B2
φ − E2

$
− ρ

γ2υ2
φ

$
+
dΠ

d$
= 0 (3)

where χ = $Ω
c . For this specific modelling of the jet we define the physical

quantities’ profiles to be:

υφ =
λχ

1 + λχ2
F =

B2
0

1 + Ky2

γ = γb +
γa − γb
1 + Qy2

Bz =
B0

1 + y2

where y = $
$0

and Bφ is given by:

Bφ = −
√
F + (χ2 − 1)B2

z

Finally, solving (3) for ρ completes the algorithm and we have the profiles
of every physical quantity needed, in order to define the unperturbed state
of the jet.
The parameter space is given by:
γa = 10 γb = 2,5,8 λ = 0.0004
Q = 10 K = 0.99, 0.9
So, γa, γb are the Lorentz factor values on the axis and the boundary of
the jet respectively. Parameter λ controls the maximum value for υφ. K
controls the maximum magnetization for the jet, the lower the value for K
gets, the lower the maximum magnetization becomes. Q affects the ra-
dius where the profile of the Lorentz factor begins it’s decrease and finally
$0 = γυ

Ω |axis.
In Fig. 1 we see an overview for the unperturbed state of the jet. Apart
from the quantities that we defined, it is helpful to focus on the density and
magnetization profile respectively. For the first one we can see that in the
area surrounding the axis the profile is almost constant, then it proceeds
to increase up to a specific value and finally it decreases many orders of

magnitude compared to the value on the axis. In contrast, the magnetiza-
tion near the axis of the jet has σ < 1 meaning that the magnetization of
the jet is rather weak. Then towards the boundary of the jet the magne-
tization increases rapidly acquiring it’s maximum on the boundary of the
outflow. Just to note that the density of the external medium is 100 times
the density of the jet measured on axis.
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Figure 1: Jet configuration overview for γb = 5, K = 0.99.

3. Methodology

We solve numerically the linearized differential equations using a shooting
method algorithm. We provide the algorithm with:
• differential equations
• boundary conditions defined on the axis, at the jet–environment inter-
face and at great distances (r →∞)

• The solutions in the environment are Bessel functions.
The last piece of information is an initial ”guess” for <(ω), and =(ω) at a
given k in order to begin the shooting method.

4. Results

Our results will focus on the behavior of the =ω versus the parameters of
importance. The first parameters are γb and σmax which is the maximum
magnetization of each configuration. =ω has units of c/$j which is the
inverse of the light crossing time of jet’s radius.
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Figure 2: Plot for the maximum =ω versus γb for every solution. There is correlation
between the value of γb and the values of =ω.

max = 0.7 max = 12 max = 25
0.00

0.05

0.10

0.15

0.20

0.25

Figure 3: Plot for the maximum =ω versus σmax for every solution. As magnetization
increases the jet becomes more unstable.

In Fig. 2, 3 we depict the distribution of =ω versus γb and σmax respectively.
We observe that for both plots, when the respective parameter increases,

also the =ω increases. This fact could imply both Kelvin–Helmholtz and
current-driven mechanisms affecting the outcome. For the first mecha-
nism the increasing velocity difference at the boundary of the jet enhances
Kelvin–Helmholtz instability, while for the latter counterpart the increasing
magnetization strengthens the current-driven mechanism.
In order to understand better the configuration’s main mechanism we
study the fiducial case, setting different value for K. The new value was
set to K = 0.9 leading to a different maximum magnetization σmax ≈ 1.
The corresponding values of =ω decreased at approximately 0.01$j/c.
This result demystifies the situation, setting the current-driven scenario as
the most probable. This is based on the fact that the timescales became
larger than the ones found for the same case with K = 0.99, meaning that
the change in the magnetization is the reason for the change in =ω. For
both K cases the velocity profile does not change.
In order to further investigate the physical mechanism we plot in Fig. 4
and in Fig. 5 the real part of the radially-dependent part of the perturba-
tions of the physical quantities and also the real part of the distribution
of radial components of perturbed forces acting on the jet respectively.
Both plots include the real parts of the quantities. The perturbed quanti-
ties, apart from υ1$, become maximum near the axis of the outflow. As
radius increases the distributions become negligible. This indicates that
the most active region of the jet, in terms of instabilities’ development, are
the regions for $ � $j. Also, the dominant component for the magnetic
field is the toroidal. Hence, the perturbation of the magnetization and the
poloidal current are going to be important, relating the instability to the
current-driven mechanism once more.
In Fig. 5 clearly the electromagnetic force is dominant over the inertial
related counterpart. The Lorentz force is given by (JJJ ×BBB)1 and the iner-
tial by [γρ(υυυ · ∇)(γυυυ)]1, excluding the centrifugal force, which are negligible
either way, due to small values for υφ. So, the current-driven scenario
mechanism is favoured, also, from this result.
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Figure 4: Real part of the perturbed physical forces versus radius. From left to right in
top row are the density, thermal pressure and radial component of velocity. Bottom row
are the poloidal, toroidal and radial component of magnetic field.
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Figure 5: Real part of the radial distribution of perturbed forces acting on the jet. Blue
and orange lines are the radial components of Lorentz force and inertial forces respec-
tively.
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