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Artificial Intelligence:: The science and 
engineering of making intelligent 

machines.  
— John McCarthy, 1955

What is artificial intelligence?

Machine  Learning:: Field of 
computer science that gives 

computers the ability to learn 
without being explicitly 

programmed.  
— Arthur Samuel, 1959



Why machine learning?

MACHINE LEARNING IS THE FUTURE



Big Questions
1. How can we accelerate the adoption of machine learning methods to 

effectively address SF problems? 
2. What ML techniques are the most effective for analysis tasks such as 

classifying objects, identifying structures, and predicting physical quantities?

• In low-mass SF regions … which feedback process dominates (e.g., jets,  stellar winds, radiation…)? 

• How do the radiation, winds, flows …. produced during the SF process affect the SF in the region?  

• How much turbulence is injected by the jets and  outflows into the SF region?  

• Are there cores that have not formed in a filament?  

• How important is core collision in the overall math of SF?  

• Is it possible to destroy cores (e.g. by large-scale shearing motions) before they can create a star?  

• What causes the core collapse? Which processes stabilize the core?  

• When & how do gravity, B fields, radiation, and turbulence impact the formation & evolution of MCs? 

• What is the fraction of MCs that undergo gravitational collapse? 



Big Problems

1. There is a lot of data! 
2. The data is high-dimensional! 
3. The data is messy, noisy, and complex! 
4. We observe photons … not physical variables! 
5. Evolutionary timescales are long (simulations are slow)!



Spitzer Galactic Plane Survey

Problem 1: There is a lot of data ….
Goal: to classify and identify features in data 



Dust Emission
Shells made by young 

massive stars & clusters 
of stars



Classification
Sorting Data



Citizen science is powerful …

Milky Way Citizen Science Project

✔ ?

DR2: Jayasinghe + 2019



1. Engage the public in Science! 
2. Numerous! 
3. Free! 
4.  Can identify atypical cases!

1. Different opinions. 
2. Need simple 

instructions. 
3. Can be hangry.

Citizen science is powerful …

Benefits Problems:

 Even experts don’t 
know the “right” answer 

(“Ground Truth”).



Object Classification: Random Forest

• Method to identify and sort objects in a sample (introduced in 1995!) 

• Works well on vectorized data/images

Tails > 1 ?

Legs > 2? Not Cat

 Mass < 10 kg?Not Cat

Not Cat

Cat

 Mass > 1 kg?

Not Cat
Decision Tree
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Training Astronomy ML Methods

• Learning the classification requires training data — TRUE answer is known 

• This data is used to set the free parameters of the method 

• Thousands or millions of examples are often required 

• Size of training set needed depends on problem complexity

“”Observe” 
assuming a distance 

+ noise”

Model light 
emitted 

Simulated 
bubbles from 

winds 

A B

0.25 pc

Training Set 
“Mock Observations”



New Bubbles!

• Training on simulations increases ability to detect some types of bubbles

Bubbles previously missed 
when training data uses only 

“by-eye” detections

Xu & Offner 2017



https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

Scikit-learn Example

Other examples: Beaumont et al. 2014 (Bubbles); Gomez et al. 2020, 2023 (SNe) 



Summary Problem I: Big Data

• “Classic” ML technique, Random Forests, provides a 
reliable, fast way to classify astronomical data. 

• Can be used to classify data vectors (e.g., photometric and 
spectroscopic data of bubbles, SNe) 

• Relatively easy to implement in python: scikit-learn



Gas properties are complex.  
Simple descriptions (mass, viral parameter) miss the big picture.

Problem 2: Data is high-
dimensional



Class II Class IIIClass IClass 0

Classic Stages of Star Formation

Shu ea 1987

Protostellar Evolution



Class 0-III

Stages of Core Formation?

Classic Stages of Star Formation

Terminology: Dense Core, Starless Core, Prestellar Core, Protostellar 
Core, Droplet, Gravitationally-Bound, Pressure-Confined, Coherent Core

Prestellar Evolution?



H. Chen, Goodman et al. (2019)

Small starless quiescent structures, likely bound by external pressure.

Droplets: A new type of core

0.1 pc

NH3 Velocity dispersion



Small starless quiescent structures, likely bound by external pressure.

Droplets: A new type of core 0.1 pc

H. Chen, Goodman et al. (2019)
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Classification
Via Clustering and Data Exploration



UMAP Uniform Manifold Approximation for 
Dimension Reduction (McInnes et al. 2018)

• Builds a graph representation in high-d space and optimizes a low-d graph to be as 
similar as possible 

• Like t-SNE (t-stochastic neighbor embedding) but more computationally efficient for 
high-d, better at preserving distances in low-d 

https://pair-code.github.io/understanding-umap/



Three core stages:  
turbulence, coherence, collapse

• Data vector: density + velocity profiles, 
core mass, vel. Dispersion, radius of 
coherence, radius, viral parameter 

• Cluster the data in high-d space using 
Fuzzy c-means 

•   ⬅ Project to 2d with UMAP

◆ = prototype 
. = core

Turbulent

Pre/Protostellar

Coherent

Offner et al.  2022

rc where : σ < cs

pc



Three core outcomes:  
dispersing, quiescent, pre/protostellar

Pre/Protostellar

Coherence

• Color UMAP by evolution: those that 
disperse, long-lived (quiescent) and 
pre/protostellar  

• 55% belong to 2 or more phases 

• Cores are stochastic: Evolutionary 
properties do not predict well the final 
outcome 

Offner et al.  2022



Predict Observed Core Outcomes

Pre/Protostellar

Coherence

• Map 159 GAS cores into the UMAP 
(Kirk et al 2017, Keown et al 2017, Kerr et al 2019,  
Chen et al 2019) 

• >20% are likely dispersing, >50% likely 
star-forming  

• Single properties (like ⍺) insufficient to 
classify cores: predictions can be 
made with machine learning! 

Offner et al.  2022
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Python Example

https://umap-learn.readthedocs.io/en/latest/basic_usage.html



Summary Problem 3: High-D Data

• Unsupervised machine learning is able to identify and 
visualize complex, hidden relationships 

• Cores evolve through 3 phases of evolution (turbulent, 
coherent, pre-protostellar) 

• Can be easily implemented using umap-learn python 
package.



Problem 3: The data is messy, noisy, and 
complex

Taurus Molecular Cloud 
Herschel

What is the distribution and impact of stellar 
feedback in molecular clouds?



Identification
Finding Signals



Deep Learning
Neural Networks



Deep Learning
Neural Networks

Axon: 
Passes signal

Neuron

Input

Signal

Dendrites: 
Connects neurons



Deep Learning
(Artificial) Neural Networks 

Input Data Hidden Network Output Decision



Finding Stellar Feedback
Goals for our Neural Network: 

• Identify bubbles made by stellar winds 

• Identify features made by protostellar outflows 

• Identity all pixels belonging to the feedback 

• Identify feedback features in 3D images

Barnard 5 
Star-Forming Region
Visualization: A. Goodman

y position

x position
velocity



Finding Stellar Feedback
Convolutional Approach to Structure Identification 
(CASI-3D) 

• Create neural network: CASI:3D 

• Train with simulations of molecular 
clouds forming stars 

• Create mock observations

Training data

Prediction:

Wind Bubbles

Van Oort et al. 2019



Apply to observations of molecular clouds
Training with numerical simulations CO emission

Stellar bubble identified by CASI-3D

Stellar wind bubble 
in the Taurus 
Molecular Cloud

Xu et al. 2020



B5

Predict Outflows in Perseus
Machine-Identified Outflows

• Identifies all 60 
known visually 
identified 
outflows 

• Identifies 20 new 
outflows! 

• Identifies 
outflows in 
confused regions!

Xu et al 2020b

New

Cluster
With ~100 

young stars

Y= young star
O = older young 

star



Apply to observations of molecular clouds



Apply to observations of molecular clouds

Y = Young protostar 
0 = Older protostar

Gas moving away 
Gas moving towards

Outflow Feedback 
identified by 
CASI-3D

Xu et al. 2020b
Xu et al. 2022a



Summary Problem 3: Messy, Noisy Data

• CNNs provide a fast, flexible, automated way to identify 
complex 2D and 3D structures.. 

• CASI-3D produces a feedback map not a catalog. 
• Some new outflows and bubbles found! 
• Impact of bubbles (stellar winds) is over-estimated by a 

factor of 10 due to observational bias; impact of 
protostellar outflows is comparable to previous visual 
estimates. 

• Intermediate difficulty to implement, many public 
packages/examples.

https://gitlab.com/casi-project/casi-3d/-/tree/master



Problem 4: We observe photons…

• Basic quantities can’t be directly 
measured: density, 
temperature, magnetic field 

• We need to infer these 
quantities from the light we 
observe  

• Only have a subset of 
wavelengths emitted + lots of 
complications

Mon R2 
Star Forming Region
Credit: R. Pokhrel, Herschel



Predicting
Generative AI



Predicting Stellar Heating
Goals: 

• Input: multi-band Spitzer images 

• Predict without information about 
star locations, properties 

• Ignore stars in front or or behind 
the cloud 

• Output: predict total radiation 
energy, from all sources,  for all 
pixels

Mon R2 
Star Forming Region
Credit: R. Pokhrel, Herschel



STARFORGErs:  Mike Grudic (Carnegie), Stella Offner, Phil 
Hopkins (Caltech), Anna Rosen (UCSD), Claude-Andre Facher-

Giguere (Northwestern)

STAR FORmation in Gaseous Environments (STARFORGE)

Fly-through + Time Animation 
Low density (purple) ↔ orange ↔ High density (white) 

Yellow/Green ↔ hotter gas 

Grudic et al. 2021, 2022



20,000 Solar Masses 
20,000,000 cells 

Magnetic fields, radiation, stars, outflows, winds, supernovae

Fly-through + Time Animation 
Low density (purple) ↔ orange ↔ High density (white) 
Yellow/Green ↔ hotter gas 



Prediction through Generative AI
Denoising Diffusion Probabilistic Models 

Credit:  A. Beres

Credit: Ho et al. 2020

DALL-E 2



Training

Input: Simulated 3 band infrared emission

Output: Total radiation field

D. Xu, Offner et al. 2023



Training

Performance on the test set:

D. Xu, Offner et al. 2023



Mon R2 
Star Forming Region
Spitzer Infrared Image

Predicting Stellar Heating



Summary Problem 4: Observe 
Photons

• Generative AI methods are undergoing a rapid revolution  
• Huge unexplored potential for scientific data analysis 
• Diffusion methods can effectively and accurately predict 

complex physical properties, such as radiation 
• Hard to implement but some public codes exist …



Big Bang Fountain, Olafur Eliasson (2014)

Problem 5: Long Evolution Timescales



Modeling
Emulators/Accelerating Equation Solutions



Neural Operators “Conventional” Partial Differential 
Equation (PDE) Solver



Neural Operators “Conventional” Partial Differential 
Equation (PDE) Solver

Initial Condition Ground Truth Prediction

Zongyi Li

Fourier Neural 
Operator



“Conventional”  PDE Solver     vs   Neural Operators
• Solve one instance.                                                Learn a family of PDEs 
• Require an explicit form.                                      Data-driven, but black box 
• Speed/accuracy trade-off in resolution.            Resolution & mesh invariant 
• Slow on fine grids, fast on coarse.                      Slow to train, fast to evaluate 
• Need simple, well-posed initial conditions.    Does not.

Azzizadenesheli 
et al. 2023



Fourier Neural Operators

• FFTs are fast 
• More efficient to 

represent continuous 
functions in Fourier 
space

Replace Convolution 
with FFT + LT + IFT

CNN Filters

Equivalent Fourier Filters

Input 
Data Fourier Layer

Linear Weight

Li et al. 2020

Activation 
Function



FNO Prediction of  Supersonic Turbulence

Poletti et al. Sub.

• Training: 11,900 initial conditions (sets), 60 turbulent seeds 
• Trained on column density, on 5 time steps  with dt= 8kyr 
• <=10% for 5 consecutive steps

Ground Truth FNO Prediction   Absolute Error

∂Σ
∂t

+ ∇ ⋅ (Σu) = 0

Keith Poletti 



Summary Problem 5: Long 
Timescales

• Neural operators have significant potential to replace 
classic PDE solvers, including gravity, hydrodynamics, 
radiative transfer … 

• Very fast but requires extensive training data 
• Whether these techniques can reach the needed accuracy 

for modeling high-dimensional data is still TBD 
• Hard to implement but some public codes exist …



Conclusions

UMAP

Random Forests

Neural Networks

Neural Operators

ML is the future!



More Testing: Out of Distribution Data

Performance on simulated data  with 100 times higher background radiation

100 x

1:1

1:10

Predicted radiation is ~ 3x too low
D. Xu, Offner et al. 2023


