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What is artificial intelligence?

Artificial Intelligence:: The science and
engineering of making intelligent
machines.

— John McCarthy, 1955

Machine Learning:: Field of
computer science that gives
computers the ability to learn
without being explicitly
programmed.

— Arthur Samuel, 1959



Why machine learning?

MACHINE LEARNING IS THE FUTURE




Big Questions

How can we accelerate the adoption of machine learning methods to
effectively address SF problems?

What ML techniques are the most effective for analysis tasks such as
classifying objects, identifying structures, and predicting physical quantities?

® In low-mass SF regions ... which feedback process dominates (e.qg., jets, stellar winds, radiation...)?
¢ How do the radiation, winds, flows .... produced during the SF process affect the SF in the region?

¢ How much turbulence is injected by the jets and outflows into the SF region?

e Are there cores that have not formed in a filament?

¢ How important is core collision in the overall math of SF?

e Is it possible to destroy cores (e.g. by large-scale shearing motions) before they can create a star?

e What causes the core collapse? Which processes stabilize the core?

e When & how do gravity, B fields, radiation, and turbulence impact the formation & evolution of MCs?

e What is the fraction of MCs that undergo gravitational collapse?



Big Problems

1. Thereis a lot of data!
2. The data is high-dimensional!
3. The data is messy, noisy, and complex!

4. We observe photons ... not physical variables!

5. Evolutionary timescales are long (simulations are slow)!




Problem 1: There is a lot of data ....

Goal: to classify and identify features in data
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Classification

Sorting Data



L n

Citizen science is powerful ...
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Citizen science is powerful ...

Benefits
1. Engage the publicin Science! 1. Different opinions.
2. Numerous! 2. Need simple
3. Free! instructions.
4. Can identify atypical cases! 3. Can be hangry.

Even experts don’t

know the “right” answer
(“Ground Truth”).




Object Classification: Random Forest

® Method to identify and sort objects in a sample (introduced in 1995!)

® Works well on vectorized data/images

Decision Tree



Object Classification: Random Forest

® Method to identify and sort objects in a sample

® Works well on vectorized data/images

Decision Tree



Object Classification: Random Forest

® Method to identify and sort objects in a sample

® Works well on vectorized data/images

. Yes

Decision Tree -




Training Astronomy ML Methods

® |earning the classification requires training data — TRUE answer is known
® This data is used to set the free parameters of the method
® Thousands or millions of examples are often required

® Size of training set needed depends on problem complexity

Simulated
bubbles from
winds

Model light "Observe” Training Set

: assuming a distance y L,
emitted ) Mock Observations

+ noise




New Bubbles!

® Training on simulations increases ability to detect some types of bubbles
Xu & Offner 2017

Bubbles previously missec
when training data uses only
"by-eye” detections




Scikit-learn Example

>>> from sklearn.ensemble import RandomForestClassifier

>>> from sklearn.datasets import make classification

>>> X, y = make_classification(n_samples=1000, n_features=4,
n_informative=2, n_redundant=0,
random_state=0, shuffle=False)

>>> clf = RandomForestClassifier(max_depth=2, random_state=0)
>>> clf.fit(X, y)

RandomForestClassifier(...)

>>> print(clf.predict([[0, @, @, 0]1]))

[1]

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

Other examples: Beaumont et al. 2014 (Bubbles); Gomez et al. 2020, 2023 (SNe)



Summary Problem |: Big Data

“Classic”MLitechnique, Random Forests, provides a
reliable, fast way to classity astronomical data.

Can be used to classity data vectors (e.g., photometric and
spectroscopic data of bubbles, SNe)

Relatively easy to implement in python: scikit-learn



Problem 2: Data is high-
T EHEDLEL

Gas properties are complex.
Simple descriptions (mass, viral parameter) miss the big picture.



Protostellar Evolution

Class | Class Il

Shu ea 1987



Prestellar Evolution?

Stages of Core Formation?

Class O-lll

Terminology: Dense Core, Starless Core, Prestellar Core, Protostellar
Core, Droplet, Gravitationally-Bound, Pressure-Confined, Coherent Core




Droplets: A new type of core

NH3 Velocity dispersion

H. Chen, Goodman et al. (2019)

Small starless quiescent structures, likely bound by external pressure.



Droplets: A new type of core . &
%

H. Chen, Goodman et al. (2019)
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Small starless quiescent structures, likely bound by external pressure.




Classification

Via Clustering and Data Exploration



Original 3D Data 2D UMAP Projection

n_neighbors: 15
ttps://pair-code.github.io/understanding-umap/ min_dist: 0.1

Builds a graph representation in high-d space and optimizes a low-d graph to be as

similar as possible

Like t-SNE (t-stochastic neighbor embedding) but more computationally efficient for
high-d, better at preserving distances in low-d




Three core stages:
turbulence, coherence, collapse

e Data vector: density + velocity profiles,

UMAP Core Embedding , . .
core mass, vel. Dispersion, radius of

coherence, radius, viral parameter

d. Coherent Radius [pc]
- 1, where : 6 < ¢,

Phase |

Phase |lI
Pre/Protostellar

Phase 1
Coherent

Offner et al



Three core outcomes:
dispersing, quiescent, prelprotostellar

Color UMAP by evolution: those that
disperse, long-lived (quiescent) and

a. Core Evolutionary Labels

8_
re/protostellar
Y pre/p

Prostellar ‘ 3 3 e 55% belongto 2 or more phases

e Cores are stochastic: Evolutionary

3 g,f . . .

SR properties do not predict well the final
% outcome

D|55|pat|ng

Offner et al. 2022



Predict Observed Core Outcomes

e Map 159 GAS cores into the UMAP

UMAP Observed Core Embeddings (Kirk et al 2017, Keown et al 2017, Kerr et al 2019,
Chen et al 2019)

e >20% are likely dispersing, >50% likely
star-forming

 Single properties (like a) insufficient to
classity cores: predictions can be
made with machine learning!

® Cepheus
Droplets

B Ophiuchus
Orian

Perseus

¥ Taurus

Offner et al. 2022



Core Dictionary

Terminology: Dense Core
Starless Protostellar

Coherent Core, Droplet
Gravitationally Bound

Pressure Confined
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Dense Core Terminology:
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Coherent Core, Droplet
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Core Dictionary

Dense Core Terminology:

Protostellar § &
Starless % o Coherent Core, Droplet

B by Gravitationally Bound
% % Pressure Confined




Core Dictionary

Dense Core Terminology:

-
o,
Protostellar “k )

Starless
4 Gravitationally Bound

Pressure Confined




Core Dictionary

(f) log(Virial Ratio)

Dense Core

Protostellar %%
Starless

C%herent gore, Droplet



Core Dictionary

Dense Core

Protostellar
N Starless

(f) log(Virial Ratio)

Gravitationahx Bounid




Core Dictionary

(f) log(Virial Ratio)

Dense Core

Protostellar
N Starless

Pressure Confined

Co4herent gore, Dx:.loplet | | |
- Gravitationally Bound



UMAP projection of the Penguin dataset

Python Example

import umap '3 e

reducer = umap.UMAP()

penquin_data = penquins|

[

“"b1lL_length_mm",
"bill_depth_mm", I
“"flipper_length_mm",

"body mass_qg",

]

].values
scaled penguin_data = StandardScaler().fit transform(penguin_data)

embedding = reducer.fit transform(scaled penguin_data)

plt.scatter(
embedding[:, @],

embedding[:, 1],
c=[sns.color_palette() [x] for x in penguins.species.map({"Adelie'":0, "Chinstrap":1, "Gento«

https://umap-learn.readthedocs.io/en/latest/basic_usage.htmi



Summary Problem 3: High-D Data

. Unsuperwsed machine learning is able to identify and
visualize complex, hidden relatlonshlps

e Cores evolve through 3 phases of evolution (turbulent,
coherent, pre-protostellar)

* Can be easilyimplemented using umap-learn python
package. '



Problem 3: The data is messy, noisy, and

complex

Taurus Molecular Cloud
Herschel

“f ~ What is the distri

feedback i

oution and impact of stellar

n molecular clouds?



|dentification

Finding Signals



Deep Learning

Neural Networks



Deep Learning

Neural Networks
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Deep Learning
(Artificial) Neural Networks

Input Data Hidden Network Output Decision




Finding Stellar Feedback

Goals for our Neural Network:

® |dentify bubbles made by stellar winds

— ® |dentify features made by protostellar outflows

e |dentity all pixels belonging to the feedback

Identify feedback features in 3D images

y positiorl

Barnard 5 -
Star-Forming Region A

Visualization: A. Goodman

velocity
X position . a\




Finding Stellar Feedback

Convolutional Approach to Structure Identification
(CASI-3D)

® (reate neural network: CASI:3D

® Train with simulations of molecular
clouds forming stars

Prediction:
Wind Bubbles

Training data ‘

Van Oort et al. 2019



Apply to observations of molecular clouds

CO emission
Stellar bubble identified by CASI-3D

Stellar wind bubble
in the Taurus
Molecular Cloud

Xu et al. 2020



Predict Outflows in Perseus

Machine-ldentified Outflows

Y= young star

e |dentifies all 60
O = older younc

known visually star
identified
outflows
. Fr Cluster
* Identifies 20 new TN, With ~100
outflows! ' young stars
* |dentifies ‘ /
outflows in

Blue: -2.0-9.0 km/s

Red: 10.2-15.0 km/s

confused regions!

Xu et al 2020b



Apply to observations of molecular clouds



\Apply to observatic of molecular clo}

Y =Young protostar

0 = Older protostar Outflovﬂeedback :

identified by

CASI-&D
Gas moving away

Xu et al. 2020b Gas moving towards

Xu et al. 2022a



Summary Problem 3: Messy, Noisy Data

CNNs provide a fast, flexible, automated way to iaentify
complex 2D and 3D structures..

CASI-3D ’p,:rocjuces a feedback map not a catalog.
Some new outflows and bubbles found!

Impact of bubbles (stellar winds) is over-estimated by a
factor of 10 due to observational bias; impact of
protostellar outflows is.comparable to previous visual
estimates. ' ‘ .

Intermediate difficulty to implement, many public
packages/examples.

https://gitlab.com/casi-project/casi-3d/-/tree/master
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e Basic quantities can't be directly
measured: density,
temperature, magnetic field .

® \We need to infer these ]
quantities from the lig|
observe -

® Only have a subset of
wavelengths emitted + lots 0
complications

Mon R2
Star Forming Region
Credit: R. Pokhrel, Herschel



Predicting

Generative Al



Predicting Stellar Heating

Goals:

e Input: multi-band Spitzer images ':

® Predict without information @bout
star locations, properties .

® |gnore stars in front or ork
the cloud

® Output: predict total radiation
energy, from all sources, fo‘RaII
pixels

Mon R2
Star Forming Region
Credit: R. Pokhrel, Herschel



Fly-through + Time Animation

Low density (purple) < orange < High density (white)
Yellow/Green « hotter gas

STAR FORmation in Gaseous Environments (STARFORGE)

STARFORGErs: Mike Grudic (Carnegie), Stella Offner, Phil

, Hopkins (Caltech), Anna Rosen (UCSD), Claude-Andre Facher-
GrUdIC et al 2021 / 2022 Giguere (Northwestern)



FIY'through + Time Animation 20,000 Solar Masses

Low density (purple) <> orange < High density (white) 20,000,000 cells
Yellow/Green < hotter gas Magnetic fields, radiation, stars, outflows, winds, supernovae
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Training

Input: Simulated 3 band infrared emission

Condition (Dust Emission) T1 000 Tm(,
,-ag.m

_'r-.r"'j;i
*"-'r'- -

Output: Total radiation field

D. Xu, Offner et al. 2023



Dust Emission - Prediction
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D. Xu, Offner et al. 2023



Radiation Field
1. Prediction

Mon R2
Star Formi
Spitzer Infrared



Summary Problem 4: Observe
Photons

Generative Almethods are undergoing a rapid revolution
Huge unexplored potential for scientific data analysis

Diffusion methods can effectively and accurately predict
complex physical properties, such as radiation

Hard to implement but some public codes exist ...



Problem 5: Long Evolution Timescales

Big Bang Fountain, Olafur Eliasson (2014)



Modeling

Emulators/Accelerating Equation Solutions



N eurd ‘ O p era tO I'S “Conventional” Partial Differential

Equation (PDE) Solver




N eurd | O p e rato I'S “Conventional” Partial Differential

Equation (PDE) Solver

Ground Truth Prediction

Fourier Neural
Operator

Zongyi Li




Solve one instance.

Require an explicit form.
Speed/accuracy trade-off in resolution.
Slow on fine grids, fast on coarse.
Need simple, well-posed initial conditions. Does not.

(a) NN learns a mapping

between

points on a fixed, discrete

grid,

Do n

a fixed grid.

Learn a family of PDEs
Data-driven, but black box

(b) NO maps between func-
input. and outpnt tions on continuous domains,
even when training data is on side the training grid, and can

do super-resolution.

Resolution & mesh invariant
Slow to train, fast to evaluate

(¢) NO maps between func-
tians, so it accepts inputs ont- EYZFEY EYTINTL

etal. 2023



Fourier Neural Operators

Replace Convolution
with FFT + LT + IFT

. 4
Activation

Function

e FFTs are fast

* More efficient to
represent continuous
functions in Fourier
space

Equivalent Fourier Filters

N1 BRI B
» L
I ll Il.qz-jg

BT

Lietal. 2020




02
—+V-2u)=0

at T=06.413 Myr

Ground Truth FNO Prediction Absolute Error

0.008

0.006 4=
-~

0.004

Projected Density (
Projected Density (”i,

-1.0 =0.2 0.0 0.5 1.0 .0 .S 1.0 0.5 .0 0 =05 00 0.
Length (oc¢) ength {(pc) Length (pc)

» Training: 11,900 initial conditions (sets), 60 turbulent seeds
* Trained on column density, on 5 time steps with dt= 8kyr
o <=10% for5 consecutive steps

Keith Poletti

Poletti et al. Sub.



Summary Problem 5: Long
Timescales

Neural opgrators have significant potential to replace
classic PDE selvers, including gravity, hydrodynamics,
radiative transfer ...

Very fast but requires extensive training data

Whether these techniques can reach the needed accuracy
for modeling high-dimensional data is still TBD

Hard to implement but some public codes exist ...



ML is the future!

Neural Networks

Random Forests ~ Neural Operators



More Testing: Out of Distribution Data

Performance on simulated data with 100 times higher background radiation

» Ground Truth ISRF (Gg)
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Predicted radiation is ~ 3x too low
D. Xu, Offner et al. 2023



