Dense gas flows and feedback in the Serpens South protocluster

Rachel Friesen, Emma Jarvis University of Toronto

What is the impact of star

low mass formation on nearby dense gas? cluster-forming

NGC 1333

NASA/JPL-Caltech/R. A. Gutermuth

How well do pc-scale outflows couple with dense gas?

- Protostellar cores: mass loss in envelope via entrainment (e.g. Arce & Sargent 2006, Offner & Chaban 2017)
- Seamus Clarke's talk outflows largely directed away from filaments, little impact?
- Low-mass protostellar clusters:
 - outflows can maintain clump turbulence (?)
 - injected energy insufficient to unbind clump
- (e.g. Li and Nakamura 2006, Arce + 2010, Duarte-Cabral + 2012, Plunkett + 2015, Feddersen + 2020, many others!)

Cluster evolution is driven by a mix of processes

- In low mass clusters, outflows are the dominant feedback mechanism (e.g., Matzner & Jumper 2015)
- Hub-filament systems accrete mass via filaments

Serpens South: a young protocluster with accretion flows

How does the cluster impact the dense gas?

Gutermuth + 2008

central

cluster

Friesen & Jarvis 2024

VLA mosaic

- NH₃ (1,1), (2,2), (3,3)
- 5" angular resolution (0.01 pc)
- $\Delta v = 0.15$ km/s
- 28 pointing mosaic
- GBT model & feather

Dense gas is highly fragmented

central

cluster

Friesen & Jarvis 2024

 \star protostars: Sun + 2022 □ mm continuum: Plunkett + 2018

Dense gas is impacted by the cluster

Core gas is impacted by the cluster

Datapoints:

Mean T_{K} , σ in cores (identified via *astrodendro*)

Core T_{K} , σ_{NT} increase closer to cluster centre

Steeper dependence $T \propto d^{-0.35}$ in high mass regions, theory

(e.g. Longmore + 2011, Wong + 2012, Scoville & Kwan 1976)

Protostellar jets & outflows: increased σ

- Collimated outflows more efficient in driving turbulence (e.g. Nakamura & Li 2007)
- Energy injection scale ~ few x 0.1 pc (obs/ theory)
- Large σ_{NT} extent matches broader outflows (e.g. Nakamura + 2011)

Collimated protostellar jet (Plunkett + 2015)

Σ_{PS} , T_K and σ_{NT} are correlated

- Both T_K and σ_{NT} increase with protostellar surface density
- Strongest positive correlation between T_K and σ_{NT} themselves
 - Gas heating: radiative + mechanical feedback

Dense cores are less bound near the cluster

Virial analysis

Core masses ~ constant

Virial masses increase toward cluster centre

Filamentary flows: reserv

Accretion timescale ~ 0.7 - 1.4 Myr at 0.5 pc

Can we say something more broadly about feedback in low mass star-forming regions?

Green Bank Ammonia Survey (GAS)

Friesen, Pineda + 2017 Pineda, Friesen + in prep

- NH₃ maps toward main Gould Belt starforming regions
- Mass in mapped regions: N(H₂) from Herschel GBS (Singh & Martin 2022)
- Protostellar catalogs: Class 0/I/II from various sources (e.g. NGC 1333: c2d; Dunham + 2015)

NH₃ (1,1) contours N(H₂) colour

3:30

YSO counts & Zps

- NH₃ maps toward main Gould Belt starforming regions
- Mass in mapped regions: N(H₂) from Herschel GBS (Singh & Martin 2022)
- Protostellar catalogs: Class 0/I/II from various sources (e.g. NGC 1333: c2d; Dunham + 2015)
- Assume M^{*} ~ 0.5 M_{Sun} for Σ_{PS}
 (following Evans + 2009)

YSO counts & Zps

Similar to Serpens South, Σ_{PS} , T_K , and σ_{NT} are positively correlated across GAS clouds

 \mathbf{x}

- Median values per region
- pixel-by-pixel correlation

Spread in parameters also increases with Estre • Narrow (subsonic) lines present in all regions, but with smaller relative fractions as T_{K} , Σ_{SFR} increase $\Delta = \Phi = \Phi = \Phi = \Phi = \Phi$

In the Serpens South protocluster:

- Dense cores are warmer with larger velocity dispersions
 - Less likely to be gravitationally bound via virial analysis
 - Virial masses larger in the cluster than in the filaments
 - Filamentary flows will deposit gas & protostars within ~1-2 Myr (but may have a natural cutoff)
- Broader lines correlated with protostellar outflows & jets within ~ 0.5 pc • Shallow dependence of T_K on r: radiative + mechanical feedback
- Filaments remain subsonic & cores more likely to be gravitationally bound

Gould Belt clouds:

• Similar correlations between Σ_{PS} , T_K , and σ_{NT} : can we use to better quantify low mass feedback effects on dense gas?