Answering the Big Questions: Are We Making Progress?
Part I: From Clouds to Cores

Understanding the formation pathways and excitation of large astronomical molecules, all the way to (pre)biotic molecules (section F-Q2.c in Astro2020).
How is the mass of a star assembled via an accretion disk?

How does the IMF depend on the environment?

Can dynamical mixing and dust transport via gas flows promote early planet formation within young discs?

What role does environment play in shaping the ISM and setting molecular cloud properties (and consequently star formation)?

How can we enhance our understanding of star-formation mechanisms in massive star-forming regions by bridging observations and numerical simulations?
How do low-mass protostars grow at the earliest stage?

What are the processes that form outflows and how do they impact stellar and planetary formation in young stars? How are highly chemically enriched star forming clouds formed?
How does stellar feedback impact the star forming ability of molecular gas structures? The role of turbulence and magnetic fields in regulating gravitational contraction.
Which molecular tracers should be used to better understand the physics of Young Stellar Objects ? How do massive stars form?
Which physical processes regulate the star formation efficiency in galaxies? How does accounting for a realistic turbulent magnetic field affect the existing picture of early star formation?
What gives rise to the magnetic field-density relationship? Can we observe ambipolar diffusion in prestellar cores?
What are the initial conditions of cluster formation? What is the formation mechanism of the multiple close binary stars?
Is the cosmic ionisation rate constant at the different scales of the star formation process? How do stars accrete their mass?
What is the nature of jets and outflows from low mass stars and brown dwarfs. How and when do massive stars form?
How do outflows affect the star formation process in the filament paradigm? How are molecular clouds shaped and how does their shape influence star formation within?
What are the accretion rates onto high-mass protostars? Which physical processes regulate the evolution of the filamentary ISM and its condensation into stars?
What mechanism controls the fragmentation of molecular clouds and the formation of multiple stellar systems? The role of magnetic fields in cloud and star formation.
What role does the magnetic field play on envelope scales (few hundreds to thousands of au)? Accretion bursts in massive stars
What physics set the mass and size of gravitationally unstable clumps within molecular clouds? What is a mechanism of the angular momentum transfer in filamentary molecular clouds ?
What is the impact of turbulence in dense cores on the formation and evolution of disks? Which mechanism is responsible for the observed outbursts in high-mass young stellar objects?
What are the physical conditions during the early stages of protostellar evolution? Cluster formation mechanisms and mass assembly process in giant molecular clouds.
What is the role of magnetic fields in MC evolution and how can we test it observationally? How do binary and higher-order multiple system form in the protocluster?
How does metallicity influence star formation and stellar feedback? How do protostars gain mass from their environment?
The role of magnetic fields in the transition stage between filaments to cluster formation How high-mass stars keep accreting despite the onset of the ionizing radiation?
How do stars evolve from a clustered environment to the Galactic field? How do the initial conditions, and thresholds, for star formation vary with environment?
What is the impact of radiative feedback on star formation? How do feedback effects from massive stars affect the surrounding magnetic field orientation and strength?

How does stellar feedback influence the star formation process within molecular clouds?

How and under which circumstances do circumstellar disks form?

What is the origin of stellar multiplicity?

Understanding the occurrence of 6.7 GHz methanol masers serves as a crucial element when examining the broader context of high-mass star formation on a larger scale
Which is the dominant mechanism that regulates the collapse and the fragmentation of massive regions in our Galaxy?

Does the magnetic field play a relevant role in regulating high-mass star formation at all scales, from large cloud scales to small circumstellar scales?

1 What mechanism solves the angular momentum problem at molecular cloud scales?









Questions:

1. How do filaments, cores and protostars assemble their mass?

2. What drives diversity in stellar mass?

3. How do feedback processes influence star formation?

4. How do magnetic fields in molecular clouds affect star formation?
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3. How do feedback processes influence star formation?

4. How do magnetic fields in molecular clouds affect star formation?

- “Nature” of Molecular Clouds: Process, not object
Accretion: everywhere.

- Magnetic Fields: everywhere.

Feedback: mostly everywhere (but see J. Alves).



The Nature of “Glant Molecular Clouds”: transient, subject to environmental effects

In summary, GMCs are observationally defined, in most
cases as overdensities or bright, compact features. This
identification is relative to the local medium, and the bound-
aries between GMCs and their surroundings are not clearly
demarcated. Indeed, theoretical and observational work
shows that GMCs are not isolated from their surroundings
and evolve over a few crossing times (see Sections 3—5 be-
low). Thus, GMCs should not be regarded as a well-defined
set of discrete entities. Cloud properties must always be
interpreted in the context of the object identification strate-
gies that produced them. These properties are illuminating
in comparative studies but the translation to any absolute
measures requires care. Chevance+2023, ASPC, 534, 1

We
find that the velocity field is continuous across cloud boundaries for a hierarchy of clouds of progres-
sively smaller sizes. Cloud boundaries defined by a density-threshold criterion are found to be quite arbi-
trary, with no correspondence to any actual physical boundary, such as a density discontinuity.

Ballesteros-Paredes, Vazquez-Semadeni, & Scalo 1999, ApJ, 515, 286

- Molecular clouds should not be viewed as 1solated
clouds, but only as the opaque regions of more extended cloud complexes
(Wannier et al 1983) Elmegreen 1985, PPIIl, UAz Press, 33
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AssemblingMass (I): d,p+ V -pu=0

. How does Turbulence arise? (“How is turbulence driven?”)

Hydrodynamic instabilities: Non-linearity of momentum equation
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. How does Turbulence arise? (“How is turbulence driven?”)

Hydrodynamic instabilities: Non-linearity of momentum equation

Turbulence for free:* \
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Assembling Mass (ll):

local collapse

Local vs Global Collapse?

global (hierarchical) collapse
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Assembling Mass (ll): Local vs Global Collapse?
local collapse global (hierarchical) collapse
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Assembling Mass (ll): Local vs Global Collapse?
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Assembling Mass (ll): Local vs Global Collapse?
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Assembling Mass (lll): Angular Momentum

Arroyo-Chavez & Vazquez-Semadeni 2022, ApdJ, 925, 78
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Assembling Mass (lll): Angular Momentum
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Accretion (I): “Radial” Flows

DEC (J2000)

Palmeirim+2013, A&A, 550, 38
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Accretion (ll): Onto and Along Filaments
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Accretion (lll): Does geometry beat linear effects?

Kainulainen+2016, A&A, 586, 27
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Accretion (lll): Does geometry beat linear effects?
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Role of Magnetic Fields (l): Strengths
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Role of Magnetic Fields (I): Strengths

- improved DCF consistent with Zeeman
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Role of Magnetic Fields (ll): Geometry
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Role of Magnetic Fields (IlI): Geometry
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Geometry

Role of Magnetic Fields (ll)
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Role of Magnetic Fields (lll): 3D Reconstruction

(a) velocity field (b) model: toro (c) model: heligs
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Role of Magnetic Fields (lll): 3D Reconstruction
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Feedback (l)

SEQUENTIAL FORMATION OF SUBGROUPS IN OB ASSOCIATIONS

BRUCE G. ELMEGREEN AND CHARLES J. LADA
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ABSTRACT

We reconsider the structure and formation of OB associations in view of recent radio and
infrared observations of the adjacent molecular clouds. As a result of this reexamination, we
propose that OB subgroups are formed in a step-by-step process which involves the propagation
of ionization (I) and shock (S) fronts through a molecular cloud complex. OB stars formed at
the edge of a molecular cloud drive these I-S fronts into the cloud. A layer of dense neutral
material accumulates between the I and S fronts and eventually becomes gravitationally unstable.
This process is analyzed in detail. Several arguments concerning the temperature and mass of this
layer suggest that a new OB subgroup will form. After approximately one-half million years,
these stars will emerge from and disrupt the star-forming layer. A new shock will be driven into
the remaining molecular cloud and will initiate another cycle of star formation.

Several observed properties of OB associations are shown to follow from such a sequential
star-forming mechanism. These include the spatial separation and systematic differences in age
of OB subgroups in a given association, the regularity of subgroup masses, the alignment of
subgroups along the galactic plane, and their physical expansion. Detailed observations of
ionization fronts, masers, IR sources, and molecular clouds are also in agreement with this model.
Finally, this mechanism provides a means of dissipating a molecular cloud and exposing less
massive stars (e.g., T Tauri stars) which may have formed ahead of the shock as part of the

original cloud collapsed and fragmented.
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Cep OB2: supernova, H II region-driven bubbles

courtesy of Lee Hartmann
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Feedback (lil)

courtesy of J. Forbrich’s talk
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courtesy of J. Forbrich’s talk
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Which Freefall Time?
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Summary:

Cloud formation: Angular momentum role and evolution?
Filaments: Accretion and Geometry.
Magnetic Fields: Going 3D.

Extragalactic Star Formation: Pushing the boundary.

38



