EPoS 2024

WHAT COLLAPSES?

UNDERSTANDING THE ONSET OF STAR FORMATION ACCORDING TO SIMULATIONS & SYNTHETIC OBSERVATIONS OF MASSIVE CLUMPS FRAGMENTATION

A. Nucara (INAF-IAPS), A. Traficante (INAF-IAPS), U. Lebreuilly (Paris-Saclay), S. Molinari (INAF-IAPS), P. Hennebelle (Paris-Saclay),

L. Testi (Alma Mater Studiorum - University of Bologna), N.-D. Tung (Paris-Saclay), C. Mininni (INAF-IAPS) & the ECOGAL team

Nucara+ in prep. Poster 21

PROBING STAR-FORMATION MECHANISMS IN MASSIVE STAR-FORMING REGIONS: **BRIDGING OBSERVATIONS AND SIMULATIONS THROUGH**

A. Nucara (INAF-IAPS), A. Traficante (INAF-IAPS), U. Lebreuilly (Paris-Saclay), S. Molinari (INAF-IAPS), P. Hennebelle (Paris-Saclay),

L. Testi (Alma Mater Studiorum - University of Bologna), N.-D. Tung (Paris-Saclay), C. Mininni (INAF-IAPS) & the ECOGAL team

Nucara+ in prep. Poster 21

First science case

ALMA 1.3 mm observations of massive clumps fragmentation from the SQUALO project: 13 massive clumps at different evolutionary stages different fragmentation modes

Traficante+ 2023 (Talk tomorrow)

Suite of **32 MHD RAMSES simulations** [Lebreuilly+ in prep.] of massive clumps fragmentation and cluster formation with different initial conditions for clumps and environment **RS10**

Seed: 1, 2 M: (500,1000) M_o R: (0.4,0.8) pc *M*: 7,10

3 projections, 8+ time steps

µ: 10,100

WHAT COLLAPSES?

UNDERSTANDING THE ONSET OF STAR FORMATION ACCORDING TO SIMULATIONS & SYNTHETIC OBSERVATIONS OF MASSIVE CLUMPS FRAGMENTATION

GLOBAL CLUMP COLLAPSE + LOCAL FRAGMENTATION/COLLAPSE

WHAT COLLAPSES?

UNDERSTANDING THE ONSET OF STAR FORMATION ACCORDING TO SIMULATIONS & SYNTHETIC OBSERVATIONS OF MASSIVE CLUMPS FRAGMENTATION

RADIATIVE TRANSFER @1.3 mm

WHAT COLLAPSES?

UNDERSTANDING THE ONSET OF STAR FORMATION ACCORDING TO SIMULATIONS & SYNTHETIC OBSERVATIONS OF MASSIVE CLUMPS FRAGMENTATION

POST PROCESSING ALMA synthetic observations w/ 7m+12m

UNDERSTANDING THE ONSET OF STAR FORMATION ACCORDING TO SIMULATIONS & SYNTHETIC OBSERVATIONS OF MASSIVE CLUMPS FRAGMENTATION

5000 AU

UNDERSTANDING THE ONSET OF STAR FORMATION ACCORDING TO SIMULATIONS & SYNTHETIC OBSERVATIONS OF MASSIVE CLUMPS FRAGMENTATION

5000 AU

2000 AU

SIMS

Fragmentation properties: preliminary results from synthetic observations

Exploration of the **impact of the mass-to-magnetic-flux ratio**, $\mu = 10$ vs. 100, on the fragmentation properties of a

1000 M $_{\odot}$ clump under identical initial conditions of Seed = 1, R = 0.4 pc, and \mathcal{M} = 10 at SFE \sim 5%.

- Strong magnetic field --> low fragmentation level. Magenta stars mark the 4 and 8 fragments identified with Hyper at 5σ .
- Similar amount of mass accreted onto fragments regardless of magnetic field strength

Thank you!

Questions? alice.nucara@inaf.it