3D space motions of molecular clouds Untangling the star formation history in the Local Milky Way

Josefa E. Großschedl J. Alves, C. Zucker, et. al.

University of Vienna Department of Astrophysics EPoS 2022 Ringberg

DSS RGB © 1995 by the Association of Universities for Research in Astronomy, Inc.

DSS RGB © 1995 by the Association of Universities for Research in Astronomy, Inc.

Mon R2

Orion

HFI PLANCK © Planck Collaboration 2014

California

Taurus-Auriga

X

 \star

 \star

 \star

 \star

Perseus

Mon R2

Orion

Regions are part of the Radcliffe Wave

HFI PLANCK © Planck Collaboration 2014

California

Taurus-Auriga

*

 \star

 \star

X

Perseus

Evidence for massive stellar feedback

Orion-Eridanus Superbubble Created by ~ 10-20 SNe Age ~ 4-10 Myr

E.g. Bally, Langer & Wilson (1987) Brown et al. (1995) Lee & Chen (2009) Ochsendorf et al. (2015) Pon et al. (2016) Barnard 1894 O'Dell+1967+2011 Muench+2008 Mathieu+2008

Mon R2

Orion

HFI PLANCK © Planck Collaboration 2014

California

Taurus-Auriga

X

 \star

 \star

 \star

 \star

Perseus

Orion A 3D shape with Gaia DR2 Großschedl et al. (2018)

Orion A

~40pc @ 400pc

HFI PLANCK © Planck Collaboration 2014

Closest massive star-forming region, *d* ~ 400 pc (e.g., Menten+2007) ~ 3000 YSOs with IR excess (Großschedl+2019)

Orion A 3D shape with Gaia DR2 Großschedl et al. (2018)

Using Average YSO distances: Tail ~ 70 deg inclined Twice as long as previously assumed (~90pc) (see also Rezaei Kh.+2020)

HFI PLANCK © Planck Collaboration 2014

Gaia DR2: Gaia Collaboration+2018 YSOs with IR-excess: Großschedl+19, Megeath+12+16, Furlan+16 Distance estimates see also: Menten+07, Schlafly+14, Kounkel+17+18, Zucker+19+20, Leike+20, Rezaei Kh+20

Heliocentric Galactic Cartesian Coordinates

Orion A 3D shape with Gaia DR2 Großschedl et al. (2018)

HFI PLANCK © Planck Collaboration 2014

YSOs with IR-excess: Großschedl+19, Megeath+12+16, Furlan+16 Distance estimates see also: Menten+07, Schlafly+14, Kounkel+17+18, Zucker+19+20, Leike+20, Rezaei Kh+20

Peculiar "**bent head**" – Was the gas **pushed**? Feedback from previous generations of massive stars?

We need Proper Motions of the gas

We know **Radial Velocities** of the gas

Gas: ¹²CO(2-1) 1.Moment map (Nishimura+2015)

YSOs: APOGEE-2 SDSS-DR16 (Majewski+2017, Ahumada+2020)

We need Proper Motions of the gas

We know Radial Velocities of the gas

Gas: ¹²CO(2-1) 1.Moment map (Nishimura+2015)

YSOs: APOGEE-2 SDSS-DR16 (Majewski+2017, Ahumada+2020)

-> YSOs proper motions can be used as proxies for cloud proper motions

3D space motions of molecular clouds

Großschedl et al. (2021)

YSOs average distances YSOs average proper motions Gas radial velocities

6D phase space for 14 sub-regions ->

Data References:

RV data: Nishimura+2015, Maddalena+1986, Dame+2001, Wilson+2005, Park+2004, Alcala+2004, Kun+2001+2008; Kounkel+2017b+2018; SDSS-DR16 APOGEE-2, Majewski+2017+2020 YSO data: Kun+2004+2008, Alcala+2004, Guieu+2010, Megeath+2012+2016, Furlan+2016, Großschedl+2019, Additional WISE-YSO-selections with AllWISE, Cutri+2013; Gaia DR2 & EDR3, Gaia Collaboration et al.+2018+2020 Other kinematic studies for Orion, e.g.: Kounkel+2018, Zari+2019, Swiggum+2021

3D space motions of molecular clouds

Großschedl et al. (2021)

Visualisation of results in 3D

Get orbital motions for each subregion E.g. with Astropy and Galpy (Milky Way Potential with Disk, Bulk & Halo, *Bovy+2015*)

Investigate distances between regions in space and time Dynamical age of massive feedback event?

Get relative space motions chose a central position & rest frame

Galactic Longitude (deg)

3D space motions of molecular clouds

Großschedl et al. (2021)

Visualisation of results in 3D

Get orbital motions for each subregion E.g. with Astropy and Galpy (Milky Way Potential with Disk, Bulk & Halo, Bovy+2015)

Investigate distances between regions in space and time Dynamical age of massive feedback event?

Get relative space motions chose a central position & rest frame

> Reference cluster for rest frame: **Cluster Orion X** (Bouy & Alves 2015, Chen+2020)

Galactic Longitude (deg)

3D space motions of molecular clouds

Großschedl et al. (2021)

Orion X - stellar group Bouy & Alves 2015, Chen+2020

possible progenitor cluster of massive stellar feedback in this region

Age ~ 10 Myrs

Extent ~ 40 pc

Cartesian **front** view

Orion-centred Galactic Cartesian coordinates with X'orion pointing toward Orion X

- L1647
- L1641-S
- L1641-S/C
- L1641-C
- L1641-N \bigcirc
- OMC-4/5 \bigcirc
- OMC-1
- OMC-2/3
- L1630-S
- L1630-N
- L1622
- L1616
 - IC2118

red filled circle: **Orion X** cluster extent

Orion A

Orion B

Outlying clouds

Z'_{Orion} (pc)

Cartesian top-down view

Orion-centred Galactic Cartesian coordinates with **X'orion** pointing toward Orion X

- L1647
- L1641-S
- L1641-S/C
- L1641-C
- L1641-N
- OMC-4/5
- OMC-1
- OMC-2/3
- L1630-S
- L1630-N
- L1622
- L1616
 - IC2118

red filled circle: Orion X cluster extent

Orion A

Orion B

Outlying clouds

Cartesian side view

Orion-centred Galactic Cartesian coordinates with **X'orion** pointing toward Orion X

- L1647
- L1641-S
- L1641-S/C
- L1641-C
- L1641-N
- OMC-4/5
- OMC-1
- OMC-2/3
- L1630-S
- L1630-N
- L1622
- L1616

IC2118

red filled circle: Orion X cluster extent

Orion A

Orion B

Outlying clouds

Cartesian **side** view Time-lapse **MOVIE** -7 to +7 Myr motions relative to **Orion X**

Minimum distance between regions ~ 6 Myr ago

- L1647
- L1641-S
- L1641-S/C
- L1641-C
- L1641-N
- OMC-4/5
- OMC-1
- OMC-2/3
- L1630-S
- L1630-N
- L1622
- L1616
 - IC2118

red filled circle: **Orion X** cluster extent

Orion A

Orion B

Outlying clouds

Z'orion – x (pc)

-100

Momentum Analysis : $p = mv (M_{\odot} km s^{-1})$

v – Velocities 3D motions of the cloud parts

m – Masses

Mass estimates from Herschel or extinction maps

Momentum Analysis : $p = mv (M_{\odot} km s^{-1})$

v – Velocities 3D motions of the cloud parts

m – Masses

Mass estimates from Herschel or extinction maps **V**_{rel} Velocity relative to three chosen rest velocities:

- relative to Orion X (cluster)
- relative to Orion A's Tail (L1641-S/C)
- relative to OBP-Near (cluster)

Momentum Analysis : $p = mv (M_{\odot} km s^{-1})$

v – Velocities 3D motions of the cloud parts

m – Masses

Mass estimates from Herschel or extinction maps

Compare to Simulations e.g. Walch & Naab (2015) Radial momentum output of one SN in ambient fractal medium with $n_0=100$ cm⁻³

V_{rel} Velocity relative to three chosen rest velocities:

- relative to Orion X (cluster)
- relative to Orion A's Tail (L1641-S/C)
- relative to OBP-Near (cluster)

Momentum Analysis : compared to Walch & Naab (2015)

Numerical simulation setup : FC (fractal+cooling, $n_0=100$ cm⁻³), FCI (+ionization)

What can we learn from Orion?

Orion is a benchmark to study the impact of feedback on the ISM in 6D phase space

- Orion clouds expand radially on 100-pc scale
- Pushed by Orion big-blast event (Orion-BB) ~ 6 Myr ago
- Likely connected to the origin of the Orion-Eridanus Superbubble

Orion-Eridanus Superbubble

X

E.g. Bally, Langer & Wilson (1987) Brown et al. (1995) Lee & Chen (2009) Ochsendorf et al. (2015) Pon et al. (2016)

Hα © Finkbeiner (2003)

Orion-Eridanus Superbubble

E.g. Bally, Langer & Wilson (1987) Brown et al. (1995) Lee & Chen (2009) Ochsendorf et al. (2015) Pon et al. (2016)

Local Bubble Zucker et al. 2022, Nature

Image © Leah Hustak, STScI

Local Bubble

Zucker et al. 2022, Nature

Local Bubble

Star-forming regions at the surface of the bubble

Bubble Origin: 10–20 SNe from UCL and LCC started ~14 Myr ago Taurus

Image © Leah Hustak, STScl

Sun

We have known about the Local Bubble for 50 years e.g. Lucke 1978, Sanders 1977, Cox & Reynolds 1987, Frisch et al. 2011

- All nearby star-forming regions (<200 pc) lie on the surface of the Local Bubble
- "6D" observational evidence that supernovae can sweep up gas into dense clouds that ultimately form new star
- Sun being centred in bubble by "luck" suggests that bubbles must be pervasive across the Galaxy
- Implying "bubbly" Milky Way

Lallement+2019, Pelgrims+2020, Leike+2020, Zucker+2021

c-content.springer.com/esm/art%3A10.1038%2Fs41586-021-04286-5/MediaObjects/41586_2021_4286_MOESM2_ESM.html

Interactive 3D space motions:

- All nearby star-forming regions (<200 pc) lie on the surface of the Local Bubble
- "6D" observational evidence that supernovae can sweep up gas into dense clouds that ultimately form new star
- Sun being centred in bubble by "luck" suggests that bubbles must be pervasive across the Galaxy
- Implying "bubbly" Milky Way

Lallement+2019, Pelgrims+2020, Leike+2020, Zucker+2021

6D phase space

Improved reconstruction of star formation histories

Bubbles everywhere?

star formation in the Milky Way

We are now able to address long standing questions using the

Massive stellar feedback likely plays a crucial role in regulating