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Numerical model

• RAMSES with essential ingredients

• Resolution: 4 parsec à 50 AU. Extensive convergence study.
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Numerical model
• Use RAMSES. Simplest possible model

• Resolution: 4 parsec to 50 AU. Extensive convergence study
• Four different models to probe different densities
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Virial parameter regulates evolution

Fig. 2.— SFR per free-fall time, SFR↵ , versus t↵/tdyn

(bottom abscissa) and ↵vir (top abscissa). The symbols for
each series of runs, where only the strength of gravity is
changed and Ms and MA are kept constant, are connected
by a line, to better distinguish each series. The two error
bars give the mean of SFR↵ , plus and minus the rms val-
ues, for each group of five 323-root-grid runs with identical
parameters (Ms ⇡ 10 and MA ⇡ 5), but different initial
conditions. The dashed line is an approximate exponential
fit to the minimum value of SFR↵ versus t↵/tdyn. From
Padoan et al. (2012), reproduced by permission of the AAS.

In their following work, Padoan et al. (2012) analyzed
an even larger parameter study, based on 45 AMR simu-
lations with the Ramses code, with a maximum resolution
equivalent to 32, 768

3 computational points. Thanks to the
very large dynamic range, they could adopt a threshold den-
sity for the creation of sink particles of ⇢max = 10

5
h⇢i,

much larger than in the uniform-grid simulations. The cre-
ation of a sink particle also required that the cell was at
a minimum of the gravitational potential, and that the ve-
locity divergence was negative. They explored two val-
ues of sonic Mach number, Ms = 10 and 20, four val-
ues of initial Alfvénic Mach number, MA = 1.25, 5, 20,
33, and seven values of the virial parameter, in the ap-
proximate range 0.2 < ↵vir < 20. Their results are pre-
sented in Figure 2, and can be summarized in three points:
i) SFR↵ decreases exponentially with increasing t↵/tdyn

(/ ↵
1/2
vir ), but is insensitive to changes in Ms (in the range

10  Ms  20), for constant values of t↵/tdyn and MA.
ii) Decreasing values of MA (increasing magnetic field
strength) reduce SFR↵ , but only to a point, beyond which
SFR↵ increases with a further decrease of MA. iii) For
values of MA characteristic of star-forming regions, SFR↵

varies with MA by less than a factor of two. Therefore,
Padoan et al. (2012) proposed a simple law for the SFR de-
pending only on t↵/tdyn, based on the empirical fit to the
minimum SFR↵ : SFR↵ ⇡ ✏ exp(�1.6 t↵/tdyn) (dashed
line in Figure 2), where ✏ is the core-to-star formation effi-
ciency.

These results were confirmed and extended in a third
parameter study by Federrath and Klessen (2012), based
on 34 uniform grid simulations with the Flash code, using
a resolution of up to 5123 computational points (plus one
AMR run with maximum resolution equivalent to 1, 024

3

computational points). Six of their runs include a magnetic
field, covering the range 1.3  MA  13, but all with ap-
proximately the same sonic Mach number, Ms ⇡ 10, so
the lack of dependence of SFR↵ on Ms found by Padoan
et al. (2012) could not be verified. On the other hand, the
28 runs without magnetic fields span a wide range of values
of sonic Mach number, 2.9  Ms  52, which allowed
Federrath and Klessen (2012) to confirm the analytical and
numerical result of Padoan and Nordlund (2011), that in
the non-magnetized case SFR↵ increases with increasing
Ms. Federrath and Klessen (2012) also studied the effect
of varying b (the ratio of compressible to total energy in the
turbulence driving), and carried out a systematic compari-
son of their simulations with the predictions of SFR models
and observations (see Sections 4.4 and 5.1, respectively).

Federrath and Klessen (2012) found that both Ms and
b can introduce order-of-magnitude variations in SFR↵ , in
the absence of magnetic fields. Increasing b and Ms pro-
duces a wider density PDF (see eqs. 5 and 6) and thus
pushes a larger fraction of gas above the critical density
for star formation, increasing SFR↵ (a larger Ms results
in a larger critical density, but also in a shorter free-fall time
at such density). For purely compressive driving, Feder-
rath and Klessen (2012) found a 4⇥ higher SFR↵ , when
increasing Ms from 5 to 50. For fixed Ms = 10, which is
a reasonable average Mach number for Milky Way clouds,
they found that purely compressive (curl-free, b = 1) driv-
ing yields about 10⇥ higher SFR↵ compared to purely
solenoidal (divergence-free, b = 1/3) driving. The increase
of SFR↵ for compressive driving is caused by the denser
structures (filaments and cores) produced with such driv-
ing, which are more gravitationally bound than the struc-
tures produced with purely solenoidal driving.

Increasing the magnetic field strength and thus decreas-
ing �, reduces SFR↵ . Numerical simulations by Padoan
and Nordlund (2011), Padoan et al. (2012) and by Feder-
rath and Klessen (2012) quantify the effect of the magnetic
field and find a maximum reduction of the SFR by a factor
of 2–3 in strongly magnetized, trans- to sub-Alfvénic turbu-
lence compared to purely hydrodynamic turbulence. This is
a relatively small change in SFR↵ compared to changes in-
duced by ↵vir, Ms, and b, in the absence of magnetic fields.

4.4 Comparison with Theoretical Models

To compare them with numerical results, we separate the
theories of the SFR into six cases (see Section 3.3), named
‘KM’, ‘PN’, ‘HC’, and ‘multi-ff KM’, ‘multi-ff PN’, ‘multi-
ff HC’, following the notation in Hennebelle and Chabrier
(2011) and Federrath and Klessen (2012). The first three
represent the original analytical derivations by Krumholz
and McKee (2005), Padoan and Nordlund (2011), and Hen-
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the surface density by letting area A = ⇡R2 and volume V = 4⇡/3R3

⇢ = M/V = (⌃A)/V = ⌃/(4/3R)

= 5.0777 10�21 ⌃

100M�pc�2

1 pc

R
g cm�3 (3)

n = 1280.9
⌃

100M�pc�2

2.37

µ

1 pc

R
cm�3 , (4)

where we have normalized the molecular weight to molecular hydrogen with
a solar composition As and alternative to the density, we can consider the
total mass of the cloud

M = ⇡⌃R2 (5)

The virial number is the ratio of the kinetic energy to the gravitational
binding energy. For a uniform sphere it is given as

↵vir =
2Ekin

Egrav
=

5�2
1DR

GM
, (6)

where

Ekin =
3

2
�2
1DM Egrav =

3GM2

5R
(7)

Given a density profile ⇢(r), a projection factor is needed to take in to account
the change in the gravitational binding energy

↵vir =
5�p�2

1DR

GM
, (8)

As an example, if ⇢(r) = ⇢RR/r, where R is the cloud size, the projection
factor becomes �p = 9/10. This projection factor was used in the Solomon
et al 1987 paper. Notice that 1/r is a quite steep departure from a uniform
cloud, and none-the-less the geometric factor is close to unity, showing that
the detailed density distribution of a given structure may not matter too
much. Only a highly fractal sub structure, with most of the mass in tightly
bound cores, may have a significantly higher binding energy than a smooth
profile, and there �p << 1.

2

SFRff ≈ ½ exp(-1.38 ⍺vir
½)

⍺vir = 0.21, 0.42, 0.83, 1.67

Padoan+2011, Padoan+2012,
Federrath+2012. See also Poster P7
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Figure 8. Dependence of the IMF turnover on virial parameter
(or mean density, equivalently), from the four simulations with a
2563 root grid, light, high, heavy and massive, from bottom to top.
The IMFs are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr, respectively, after the formation
of the first star. Except for the top one, the histograms are shifted
vertically by a factor of 1/4 (heavy), 1/16 (high) and 1/64 (light).
The dotted lines are lognormal fits between the smallest mass bin
where the IMF appears to be complete and approximately 10 ⇥
mpeak. The IMF peak clearly shifts toward smaller values as the
mean density increases.

of MBE, we get a modified turbulent BE mass:

MBE,t ⇡ 1.182 �4
th

G3/2P 1/2
0

=
MBE,0

(1 + Ms
2)1/2

⇡ MBE,0

Ms
, (5)

which is a good approximation to the turnover mass in
the turbulent fragmentation models mentioned above,
providing an intuitive explanation of the origin of the
IMF peak. To test the validity of this prediction, we
express the IMF peak as

mpeak ⌘ ✏BE MBE,t, (6)

where ✏BE is a local e�ciency parameter analogous to
✏acc in the sink particle accretion model, and use the
simulations to verify whether it provides a good fit to
the numerical IMFs.

For this purpose, we use the four simulations light,
high, heavy, and massive with a root grid of 2563 cells
and six AMR levels, with four di↵erent values of the virial
parameter (see Table 1). The virial parameter is varied
by leaving the rms velocity constant and increasing or
decreasing the mean density (total mass) in the compu-
tational volume by a factor of two or four relative to the
reference run high (see § 3 and Table 1). The overdensity
threshold at which the root grid is refined is changed from
⇢ref = 10h⇢i in run high to ⇢ref = 20h⇢i, 5h⇢i, and 2.5h⇢i
in light, heavy, and massive, respectively, to keep the min-
imum Jeans number constant, at 14.4. The IMFs from

Figure 9. Values of the IMF peak, mpeak, from the lognormal
fits of the previous figure, plotted as a function of the virial pa-
rameter of each simulation (a proxy for the inverse of the mean gas
density at constant rms velocity and size). The filled circle shows
the value predicted by equation 6 for the simulation high, assuming
an e�ciency factor ✏BE = 0.64, in order to match exactly mpeak
measured from the simulation. Assuming this fixed value of ✏BE,
the open circles show the prediction of equation 6 for the other
three simulations. The measured value for the highest-density run
is larger than the prediction, possibly because of a decreasing nu-
merical convergence of the value of mpeak as this becomes smaller
with increasing mean density.

these four simulations are shown in Figure 8, where the
histograms are shifted vertically by a factor of four be-
tween consecutive runs, except for the top histogram, to
minimize the confusion of overlapping plots. The IMFs
are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr after the formation of
the first star, for the runs light, high, heavy, and mas-
sive, respectively. We have chosen a rather low SFE for
this comparison because the run light has a very low
SFR↵ , such that to reach a much higher SFE the simu-
lation should be integrated for much longer than 2 Myr.
As commented above, on a scale of 4 pc the influence
of larger-scale feedbacks should become quite significant
after approximately 2 Myr, making this idealized setup
driven by a random force somewhat questionable at later
times. Despite the short timescale of the higher ↵vir runs
at SFE= 0.024, we have found that the value of mpeak
(and the ratios of its values from di↵erent runs) is already
reasonably stable to allow this comparison.

The dotted lines in Fig. 8 are lognormal fits of the IMFs
(the power law fit at larger masses is not possible in this
case because the high-mass tail is not developed yet at
this early time). The lowest-mass bin for the fit is based
on the approximate IMF completeness limit judged as in
the numerical convergence test, while the highest-mass
bin is approximately 10 ⇥ mpeak, assuming that the be-
ginning of the power law tail is also shifted to higher
masses as the mean density decreases. The IMF peak
clearly shifts toward smaller values as the mean density
increases, as predicted by the isothermal turbulent frag-
mentation model of the IMF. The best-fit values of the
lognormal peaks are shown in Fig. 9, plotted as a func-
tion of the ↵vir value of each run (a proxy for the inverse
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of the mean density at a fixed rms velocity and size).
The prediction of equation 6 is shown by the open cir-
cles, after normalizing the relation by the measured value
of mpeak in the run high. The normalization corresponds
to the choice ✏BE = 0.64, quite close to the related lo-
cal e�ciency parameter set in the sink particle accretion
model, ✏acc = 0.5.

Fig. 9 shows that the measured variation of mpeak with
the mean density is approximately consistent with the
prediction of equation 6. Although the slight discrepancy
in the case of the run massive may seem significant, it is
not significant if one takes into account the uncertainty
in the measured value for the run high. Furthermore,
because we have established that the value of mpeak in
the run high may not be fully converged (see Fig. 5), it is
also possible that the value of mpeak in the run massive
is even less converged, as the total mass in this run is
larger and the peak smaller than in the run high. The
increasingly higher lack of numerical convergence with
increasing mean density could then explain the observed
deviation from the prediction of equation 6.

We set the system rms velocity assuming a tempera-
ture of 10 K and the system size (or total mass) based on
a standard Larson velocity-size relation (see § 3). If we
chose not to follow the observed Larson velocity–size re-
lation, both the rms velocity and the size (or total mass)
of the system could be rescaled, as long as the nondimen-
sional parameters of the simulation, Ms and ↵vir, were
not changed. Thus, one may suspect that the predicted
IMF peak is consistent with the numerical IMFs only for
specific values of gas temperature or system size, but it
can be easily shown that this agreement is immune to
the rescaling of the simulation. The virial parameter can
be expressed as:

↵vir / Ms
2TM�2/3

tot ⇢�1/3
0 . (7)

Because both Ms and ↵vir are fixed in the simula-
tion, the mass can only be scaled according to Mtot /
T 3/2⇢�1/2

0 / MBE,0. This shows that imposing a value
for both Ms and ↵vir in the simulation implies a fixed
value of the ratio Mtot/MBE,0, and thus a fixed value of
Mtot/MBE,t. Thus, rescaling the temperature or size (or
total mass) of the system does not a↵ect our comparison
of the predicted IMF peak with the IMF peak from the
simulations.

To fully test the prediction of the turbulent fragmen-
tation model with respect to the IMF turnover (and the
width of the IMF as well), we should also consider the
dependence of mpeak on the sonic and Alfvénic rms Mach
number. Because all the simulations of this work have
the same Mach number, this important test will be ad-
dressed in a separate study.

5.2. Variability of the IMF turnover with environment

The theoretical and numerical prediction that the IMF
peak scales with MBE,t implies an environmental depen-
dence of the IMF. In previous works, we have already
stressed that if the virial parameter does not vary sig-
nificantly in starforming regions, and assuming standard
velocity–size and mass–size relations, the predicted IMF
peak should have only mild variations (Padoan et al.
2007). Here, we try to quantify the expected scatter of
mpeak based on the scatter in the observed properties of

Figure 10. Predicted IMF peak according to equation (6) ver-
sus cloud mass, for Outer Galaxy Survey clouds from Heyer et al.
(1998) and the Galactic Ring Survey clouds from Roman-Duval
et al. (2010), more massive than 103 M� (see main text for de-
tails about the cloud selection). The error bars give the mean and
standard deviation of mpeak in six logarithmic bins of Mcl.

star-forming regions. We can express mpeak as a function
of the nondimensional parameters of the simulation and
the total mass:

mpeak ⇡ 1.124 MtotMs
�4↵3/2

vir , (8)

which shows that for constant ↵vir and for standard Lar-
son relations, Mtot / L2 and �v / L1/2, mpeak is con-
stant. However, observed MCs have a range of values of
↵vir and yield Larson relations with a significant scat-
ter and with exponents in general di↵erent from those
standard values. Thus, our IMF model should predict
non-negligible IMF peak variations from cloud to cloud.

In order to quantify the observational scatter in mpeak
predicted by the model, we consider two of the largest
Galactic MC samples available: the MC catalog by Heyer
et al. (2001), extracted from a decomposition of the 12CO
FCRAO Outer Galaxy Survey (Heyer et al. 1998), and
the MC catalog by Roman-Duval et al. (2010), extracted
from the UB–FCRAO Galactic Ring Survey (Jackson
et al. 2006). To limit the distance and mass uncertain-
ties, Heyer et al. (2001) consider only MCs with circular
velocity < �20 km s�1, which yield a sample of 3901
clouds. Roman-Duval et al. (2010) provide an estimate
of the error in the mass determination of each of the 750
MCs in their catalog. We select a subsample of their
clouds with a mass error < 20%, in order to minimize
the scatter in cloud properties due to observational er-
rors instead of intrinsic cloud di↵erences. Finally, we
retain only MCs with mass > 103 M� (smaller clouds
would not yield a well-sampled IMF), resulting in 720
MCs from the Outer Galaxy Survey and 174 MCs from
the Galactic Ring Survey.

Figure 10 shows the estimated value of mpeak for the
clouds in the two observational samples. In the case of
the Outer Galaxy, mpeak shows a tendency to decrease
with increasing cloud mass, while mpeak is essentially
independent of cloud mass in the case of the Galactic
Ring. On the average, the expected IMF peak is more
than twice larger for clouds in the Outer Galaxy than for
those in the Galactic Ring, because of the larger values
of ↵vir in the Outer Galaxy clouds. For the most massive
clouds (few⇥105 M�), where ↵vir is relatively low also in

Variation of IMF with environment

mpeak
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parameter (see Table 1). The virial parameter is varied
by leaving the rms velocity constant and increasing or
decreasing the mean density (total mass) in the compu-
tational volume by a factor of two or four relative to the
reference run high (see § 3 and Table 1). The overdensity
threshold at which the root grid is refined is changed from
⇢ref = 10h⇢i in run high to ⇢ref = 20h⇢i, 5h⇢i, and 2.5h⇢i
in light, heavy, and massive, respectively, to keep the min-
imum Jeans number constant, at 14.4. The IMFs from

Figure 9. Values of the IMF peak, mpeak, from the lognormal
fits of the previous figure, plotted as a function of the virial pa-
rameter of each simulation (a proxy for the inverse of the mean gas
density at constant rms velocity and size). The filled circle shows
the value predicted by equation 6 for the simulation high, assuming
an e�ciency factor ✏BE = 0.64, in order to match exactly mpeak
measured from the simulation. Assuming this fixed value of ✏BE,
the open circles show the prediction of equation 6 for the other
three simulations. The measured value for the highest-density run
is larger than the prediction, possibly because of a decreasing nu-
merical convergence of the value of mpeak as this becomes smaller
with increasing mean density.

these four simulations are shown in Figure 8, where the
histograms are shifted vertically by a factor of four be-
tween consecutive runs, except for the top histogram, to
minimize the confusion of overlapping plots. The IMFs
are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr after the formation of
the first star, for the runs light, high, heavy, and mas-
sive, respectively. We have chosen a rather low SFE for
this comparison because the run light has a very low
SFR↵ , such that to reach a much higher SFE the simu-
lation should be integrated for much longer than 2 Myr.
As commented above, on a scale of 4 pc the influence
of larger-scale feedbacks should become quite significant
after approximately 2 Myr, making this idealized setup
driven by a random force somewhat questionable at later
times. Despite the short timescale of the higher ↵vir runs
at SFE= 0.024, we have found that the value of mpeak
(and the ratios of its values from di↵erent runs) is already
reasonably stable to allow this comparison.

The dotted lines in Fig. 8 are lognormal fits of the IMFs
(the power law fit at larger masses is not possible in this
case because the high-mass tail is not developed yet at
this early time). The lowest-mass bin for the fit is based
on the approximate IMF completeness limit judged as in
the numerical convergence test, while the highest-mass
bin is approximately 10 ⇥ mpeak, assuming that the be-
ginning of the power law tail is also shifted to higher
masses as the mean density decreases. The IMF peak
clearly shifts toward smaller values as the mean density
increases, as predicted by the isothermal turbulent frag-
mentation model of the IMF. The best-fit values of the
lognormal peaks are shown in Fig. 9, plotted as a func-
tion of the ↵vir value of each run (a proxy for the inverse

11

of the mean density at a fixed rms velocity and size).
The prediction of equation 6 is shown by the open cir-
cles, after normalizing the relation by the measured value
of mpeak in the run high. The normalization corresponds
to the choice ✏BE = 0.64, quite close to the related lo-
cal e�ciency parameter set in the sink particle accretion
model, ✏acc = 0.5.

Fig. 9 shows that the measured variation of mpeak with
the mean density is approximately consistent with the
prediction of equation 6. Although the slight discrepancy
in the case of the run massive may seem significant, it is
not significant if one takes into account the uncertainty
in the measured value for the run high. Furthermore,
because we have established that the value of mpeak in
the run high may not be fully converged (see Fig. 5), it is
also possible that the value of mpeak in the run massive
is even less converged, as the total mass in this run is
larger and the peak smaller than in the run high. The
increasingly higher lack of numerical convergence with
increasing mean density could then explain the observed
deviation from the prediction of equation 6.

We set the system rms velocity assuming a tempera-
ture of 10 K and the system size (or total mass) based on
a standard Larson velocity-size relation (see § 3). If we
chose not to follow the observed Larson velocity–size re-
lation, both the rms velocity and the size (or total mass)
of the system could be rescaled, as long as the nondimen-
sional parameters of the simulation, Ms and ↵vir, were
not changed. Thus, one may suspect that the predicted
IMF peak is consistent with the numerical IMFs only for
specific values of gas temperature or system size, but it
can be easily shown that this agreement is immune to
the rescaling of the simulation. The virial parameter can
be expressed as:

↵vir / Ms
2TM�2/3

tot ⇢�1/3
0 . (7)

Because both Ms and ↵vir are fixed in the simula-
tion, the mass can only be scaled according to Mtot /
T 3/2⇢�1/2

0 / MBE,0. This shows that imposing a value
for both Ms and ↵vir in the simulation implies a fixed
value of the ratio Mtot/MBE,0, and thus a fixed value of
Mtot/MBE,t. Thus, rescaling the temperature or size (or
total mass) of the system does not a↵ect our comparison
of the predicted IMF peak with the IMF peak from the
simulations.

To fully test the prediction of the turbulent fragmen-
tation model with respect to the IMF turnover (and the
width of the IMF as well), we should also consider the
dependence of mpeak on the sonic and Alfvénic rms Mach
number. Because all the simulations of this work have
the same Mach number, this important test will be ad-
dressed in a separate study.

5.2. Variability of the IMF turnover with environment

The theoretical and numerical prediction that the IMF
peak scales with MBE,t implies an environmental depen-
dence of the IMF. In previous works, we have already
stressed that if the virial parameter does not vary sig-
nificantly in starforming regions, and assuming standard
velocity–size and mass–size relations, the predicted IMF
peak should have only mild variations (Padoan et al.
2007). Here, we try to quantify the expected scatter of
mpeak based on the scatter in the observed properties of

Figure 10. Predicted IMF peak according to equation (6) ver-
sus cloud mass, for Outer Galaxy Survey clouds from Heyer et al.
(1998) and the Galactic Ring Survey clouds from Roman-Duval
et al. (2010), more massive than 103 M� (see main text for de-
tails about the cloud selection). The error bars give the mean and
standard deviation of mpeak in six logarithmic bins of Mcl.

star-forming regions. We can express mpeak as a function
of the nondimensional parameters of the simulation and
the total mass:

mpeak ⇡ 1.124 MtotMs
�4↵3/2

vir , (8)

which shows that for constant ↵vir and for standard Lar-
son relations, Mtot / L2 and �v / L1/2, mpeak is con-
stant. However, observed MCs have a range of values of
↵vir and yield Larson relations with a significant scat-
ter and with exponents in general di↵erent from those
standard values. Thus, our IMF model should predict
non-negligible IMF peak variations from cloud to cloud.

In order to quantify the observational scatter in mpeak
predicted by the model, we consider two of the largest
Galactic MC samples available: the MC catalog by Heyer
et al. (2001), extracted from a decomposition of the 12CO
FCRAO Outer Galaxy Survey (Heyer et al. 1998), and
the MC catalog by Roman-Duval et al. (2010), extracted
from the UB–FCRAO Galactic Ring Survey (Jackson
et al. 2006). To limit the distance and mass uncertain-
ties, Heyer et al. (2001) consider only MCs with circular
velocity < �20 km s�1, which yield a sample of 3901
clouds. Roman-Duval et al. (2010) provide an estimate
of the error in the mass determination of each of the 750
MCs in their catalog. We select a subsample of their
clouds with a mass error < 20%, in order to minimize
the scatter in cloud properties due to observational er-
rors instead of intrinsic cloud di↵erences. Finally, we
retain only MCs with mass > 103 M� (smaller clouds
would not yield a well-sampled IMF), resulting in 720
MCs from the Outer Galaxy Survey and 174 MCs from
the Galactic Ring Survey.

Figure 10 shows the estimated value of mpeak for the
clouds in the two observational samples. In the case of
the Outer Galaxy, mpeak shows a tendency to decrease
with increasing cloud mass, while mpeak is essentially
independent of cloud mass in the case of the Galactic
Ring. On the average, the expected IMF peak is more
than twice larger for clouds in the Outer Galaxy than for
those in the Galactic Ring, because of the larger values
of ↵vir in the Outer Galaxy clouds. For the most massive
clouds (few⇥105 M�), where ↵vir is relatively low also in
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Figure 8. Dependence of the IMF turnover on virial parameter
(or mean density, equivalently), from the four simulations with a
2563 root grid, light, high, heavy and massive, from bottom to top.
The IMFs are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr, respectively, after the formation
of the first star. Except for the top one, the histograms are shifted
vertically by a factor of 1/4 (heavy), 1/16 (high) and 1/64 (light).
The dotted lines are lognormal fits between the smallest mass bin
where the IMF appears to be complete and approximately 10 ⇥
mpeak. The IMF peak clearly shifts toward smaller values as the
mean density increases.

of MBE, we get a modified turbulent BE mass:

MBE,t ⇡ 1.182 �4
th

G3/2P 1/2
0

=
MBE,0

(1 + Ms
2)1/2

⇡ MBE,0

Ms
, (5)

which is a good approximation to the turnover mass in
the turbulent fragmentation models mentioned above,
providing an intuitive explanation of the origin of the
IMF peak. To test the validity of this prediction, we
express the IMF peak as

mpeak ⌘ ✏BE MBE,t, (6)

where ✏BE is a local e�ciency parameter analogous to
✏acc in the sink particle accretion model, and use the
simulations to verify whether it provides a good fit to
the numerical IMFs.

For this purpose, we use the four simulations light,
high, heavy, and massive with a root grid of 2563 cells
and six AMR levels, with four di↵erent values of the virial
parameter (see Table 1). The virial parameter is varied
by leaving the rms velocity constant and increasing or
decreasing the mean density (total mass) in the compu-
tational volume by a factor of two or four relative to the
reference run high (see § 3 and Table 1). The overdensity
threshold at which the root grid is refined is changed from
⇢ref = 10h⇢i in run high to ⇢ref = 20h⇢i, 5h⇢i, and 2.5h⇢i
in light, heavy, and massive, respectively, to keep the min-
imum Jeans number constant, at 14.4. The IMFs from

Figure 9. Values of the IMF peak, mpeak, from the lognormal
fits of the previous figure, plotted as a function of the virial pa-
rameter of each simulation (a proxy for the inverse of the mean gas
density at constant rms velocity and size). The filled circle shows
the value predicted by equation 6 for the simulation high, assuming
an e�ciency factor ✏BE = 0.64, in order to match exactly mpeak
measured from the simulation. Assuming this fixed value of ✏BE,
the open circles show the prediction of equation 6 for the other
three simulations. The measured value for the highest-density run
is larger than the prediction, possibly because of a decreasing nu-
merical convergence of the value of mpeak as this becomes smaller
with increasing mean density.

these four simulations are shown in Figure 8, where the
histograms are shifted vertically by a factor of four be-
tween consecutive runs, except for the top histogram, to
minimize the confusion of overlapping plots. The IMFs
are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr after the formation of
the first star, for the runs light, high, heavy, and mas-
sive, respectively. We have chosen a rather low SFE for
this comparison because the run light has a very low
SFR↵ , such that to reach a much higher SFE the simu-
lation should be integrated for much longer than 2 Myr.
As commented above, on a scale of 4 pc the influence
of larger-scale feedbacks should become quite significant
after approximately 2 Myr, making this idealized setup
driven by a random force somewhat questionable at later
times. Despite the short timescale of the higher ↵vir runs
at SFE= 0.024, we have found that the value of mpeak
(and the ratios of its values from di↵erent runs) is already
reasonably stable to allow this comparison.

The dotted lines in Fig. 8 are lognormal fits of the IMFs
(the power law fit at larger masses is not possible in this
case because the high-mass tail is not developed yet at
this early time). The lowest-mass bin for the fit is based
on the approximate IMF completeness limit judged as in
the numerical convergence test, while the highest-mass
bin is approximately 10 ⇥ mpeak, assuming that the be-
ginning of the power law tail is also shifted to higher
masses as the mean density decreases. The IMF peak
clearly shifts toward smaller values as the mean density
increases, as predicted by the isothermal turbulent frag-
mentation model of the IMF. The best-fit values of the
lognormal peaks are shown in Fig. 9, plotted as a func-
tion of the ↵vir value of each run (a proxy for the inverse
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Figure 8. Dependence of the IMF turnover on virial parameter
(or mean density, equivalently), from the four simulations with a
2563 root grid, light, high, heavy and massive, from bottom to top.
The IMFs are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr, respectively, after the formation
of the first star. Except for the top one, the histograms are shifted
vertically by a factor of 1/4 (heavy), 1/16 (high) and 1/64 (light).
The dotted lines are lognormal fits between the smallest mass bin
where the IMF appears to be complete and approximately 10 ⇥
mpeak. The IMF peak clearly shifts toward smaller values as the
mean density increases.
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which is a good approximation to the turnover mass in
the turbulent fragmentation models mentioned above,
providing an intuitive explanation of the origin of the
IMF peak. To test the validity of this prediction, we
express the IMF peak as

mpeak ⌘ ✏BE MBE,t, (6)

where ✏BE is a local e�ciency parameter analogous to
✏acc in the sink particle accretion model, and use the
simulations to verify whether it provides a good fit to
the numerical IMFs.

For this purpose, we use the four simulations light,
high, heavy, and massive with a root grid of 2563 cells
and six AMR levels, with four di↵erent values of the virial
parameter (see Table 1). The virial parameter is varied
by leaving the rms velocity constant and increasing or
decreasing the mean density (total mass) in the compu-
tational volume by a factor of two or four relative to the
reference run high (see § 3 and Table 1). The overdensity
threshold at which the root grid is refined is changed from
⇢ref = 10h⇢i in run high to ⇢ref = 20h⇢i, 5h⇢i, and 2.5h⇢i
in light, heavy, and massive, respectively, to keep the min-
imum Jeans number constant, at 14.4. The IMFs from

Figure 9. Values of the IMF peak, mpeak, from the lognormal
fits of the previous figure, plotted as a function of the virial pa-
rameter of each simulation (a proxy for the inverse of the mean gas
density at constant rms velocity and size). The filled circle shows
the value predicted by equation 6 for the simulation high, assuming
an e�ciency factor ✏BE = 0.64, in order to match exactly mpeak
measured from the simulation. Assuming this fixed value of ✏BE,
the open circles show the prediction of equation 6 for the other
three simulations. The measured value for the highest-density run
is larger than the prediction, possibly because of a decreasing nu-
merical convergence of the value of mpeak as this becomes smaller
with increasing mean density.

these four simulations are shown in Figure 8, where the
histograms are shifted vertically by a factor of four be-
tween consecutive runs, except for the top histogram, to
minimize the confusion of overlapping plots. The IMFs
are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr after the formation of
the first star, for the runs light, high, heavy, and mas-
sive, respectively. We have chosen a rather low SFE for
this comparison because the run light has a very low
SFR↵ , such that to reach a much higher SFE the simu-
lation should be integrated for much longer than 2 Myr.
As commented above, on a scale of 4 pc the influence
of larger-scale feedbacks should become quite significant
after approximately 2 Myr, making this idealized setup
driven by a random force somewhat questionable at later
times. Despite the short timescale of the higher ↵vir runs
at SFE= 0.024, we have found that the value of mpeak
(and the ratios of its values from di↵erent runs) is already
reasonably stable to allow this comparison.

The dotted lines in Fig. 8 are lognormal fits of the IMFs
(the power law fit at larger masses is not possible in this
case because the high-mass tail is not developed yet at
this early time). The lowest-mass bin for the fit is based
on the approximate IMF completeness limit judged as in
the numerical convergence test, while the highest-mass
bin is approximately 10 ⇥ mpeak, assuming that the be-
ginning of the power law tail is also shifted to higher
masses as the mean density decreases. The IMF peak
clearly shifts toward smaller values as the mean density
increases, as predicted by the isothermal turbulent frag-
mentation model of the IMF. The best-fit values of the
lognormal peaks are shown in Fig. 9, plotted as a func-
tion of the ↵vir value of each run (a proxy for the inverse
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Figure 8. Dependence of the IMF turnover on virial parameter
(or mean density, equivalently), from the four simulations with a
2563 root grid, light, high, heavy and massive, from bottom to top.
The IMFs are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr, respectively, after the formation
of the first star. Except for the top one, the histograms are shifted
vertically by a factor of 1/4 (heavy), 1/16 (high) and 1/64 (light).
The dotted lines are lognormal fits between the smallest mass bin
where the IMF appears to be complete and approximately 10 ⇥
mpeak. The IMF peak clearly shifts toward smaller values as the
mean density increases.
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which is a good approximation to the turnover mass in
the turbulent fragmentation models mentioned above,
providing an intuitive explanation of the origin of the
IMF peak. To test the validity of this prediction, we
express the IMF peak as

mpeak ⌘ ✏BE MBE,t, (6)

where ✏BE is a local e�ciency parameter analogous to
✏acc in the sink particle accretion model, and use the
simulations to verify whether it provides a good fit to
the numerical IMFs.

For this purpose, we use the four simulations light,
high, heavy, and massive with a root grid of 2563 cells
and six AMR levels, with four di↵erent values of the virial
parameter (see Table 1). The virial parameter is varied
by leaving the rms velocity constant and increasing or
decreasing the mean density (total mass) in the compu-
tational volume by a factor of two or four relative to the
reference run high (see § 3 and Table 1). The overdensity
threshold at which the root grid is refined is changed from
⇢ref = 10h⇢i in run high to ⇢ref = 20h⇢i, 5h⇢i, and 2.5h⇢i
in light, heavy, and massive, respectively, to keep the min-
imum Jeans number constant, at 14.4. The IMFs from

Figure 9. Values of the IMF peak, mpeak, from the lognormal
fits of the previous figure, plotted as a function of the virial pa-
rameter of each simulation (a proxy for the inverse of the mean gas
density at constant rms velocity and size). The filled circle shows
the value predicted by equation 6 for the simulation high, assuming
an e�ciency factor ✏BE = 0.64, in order to match exactly mpeak
measured from the simulation. Assuming this fixed value of ✏BE,
the open circles show the prediction of equation 6 for the other
three simulations. The measured value for the highest-density run
is larger than the prediction, possibly because of a decreasing nu-
merical convergence of the value of mpeak as this becomes smaller
with increasing mean density.

these four simulations are shown in Figure 8, where the
histograms are shifted vertically by a factor of four be-
tween consecutive runs, except for the top histogram, to
minimize the confusion of overlapping plots. The IMFs
are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr after the formation of
the first star, for the runs light, high, heavy, and mas-
sive, respectively. We have chosen a rather low SFE for
this comparison because the run light has a very low
SFR↵ , such that to reach a much higher SFE the simu-
lation should be integrated for much longer than 2 Myr.
As commented above, on a scale of 4 pc the influence
of larger-scale feedbacks should become quite significant
after approximately 2 Myr, making this idealized setup
driven by a random force somewhat questionable at later
times. Despite the short timescale of the higher ↵vir runs
at SFE= 0.024, we have found that the value of mpeak
(and the ratios of its values from di↵erent runs) is already
reasonably stable to allow this comparison.

The dotted lines in Fig. 8 are lognormal fits of the IMFs
(the power law fit at larger masses is not possible in this
case because the high-mass tail is not developed yet at
this early time). The lowest-mass bin for the fit is based
on the approximate IMF completeness limit judged as in
the numerical convergence test, while the highest-mass
bin is approximately 10 ⇥ mpeak, assuming that the be-
ginning of the power law tail is also shifted to higher
masses as the mean density decreases. The IMF peak
clearly shifts toward smaller values as the mean density
increases, as predicted by the isothermal turbulent frag-
mentation model of the IMF. The best-fit values of the
lognormal peaks are shown in Fig. 9, plotted as a func-
tion of the ↵vir value of each run (a proxy for the inverse
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of the mean density at a fixed rms velocity and size).
The prediction of equation 6 is shown by the open cir-
cles, after normalizing the relation by the measured value
of mpeak in the run high. The normalization corresponds
to the choice ✏BE = 0.64, quite close to the related lo-
cal e�ciency parameter set in the sink particle accretion
model, ✏acc = 0.5.

Fig. 9 shows that the measured variation of mpeak with
the mean density is approximately consistent with the
prediction of equation 6. Although the slight discrepancy
in the case of the run massive may seem significant, it is
not significant if one takes into account the uncertainty
in the measured value for the run high. Furthermore,
because we have established that the value of mpeak in
the run high may not be fully converged (see Fig. 5), it is
also possible that the value of mpeak in the run massive
is even less converged, as the total mass in this run is
larger and the peak smaller than in the run high. The
increasingly higher lack of numerical convergence with
increasing mean density could then explain the observed
deviation from the prediction of equation 6.

We set the system rms velocity assuming a tempera-
ture of 10 K and the system size (or total mass) based on
a standard Larson velocity-size relation (see § 3). If we
chose not to follow the observed Larson velocity–size re-
lation, both the rms velocity and the size (or total mass)
of the system could be rescaled, as long as the nondimen-
sional parameters of the simulation, Ms and ↵vir, were
not changed. Thus, one may suspect that the predicted
IMF peak is consistent with the numerical IMFs only for
specific values of gas temperature or system size, but it
can be easily shown that this agreement is immune to
the rescaling of the simulation. The virial parameter can
be expressed as:

↵vir / Ms
2TM�2/3

tot ⇢�1/3
0 . (7)

Because both Ms and ↵vir are fixed in the simula-
tion, the mass can only be scaled according to Mtot /
T 3/2⇢�1/2

0 / MBE,0. This shows that imposing a value
for both Ms and ↵vir in the simulation implies a fixed
value of the ratio Mtot/MBE,0, and thus a fixed value of
Mtot/MBE,t. Thus, rescaling the temperature or size (or
total mass) of the system does not a↵ect our comparison
of the predicted IMF peak with the IMF peak from the
simulations.

To fully test the prediction of the turbulent fragmen-
tation model with respect to the IMF turnover (and the
width of the IMF as well), we should also consider the
dependence of mpeak on the sonic and Alfvénic rms Mach
number. Because all the simulations of this work have
the same Mach number, this important test will be ad-
dressed in a separate study.

5.2. Variability of the IMF turnover with environment

The theoretical and numerical prediction that the IMF
peak scales with MBE,t implies an environmental depen-
dence of the IMF. In previous works, we have already
stressed that if the virial parameter does not vary sig-
nificantly in starforming regions, and assuming standard
velocity–size and mass–size relations, the predicted IMF
peak should have only mild variations (Padoan et al.
2007). Here, we try to quantify the expected scatter of
mpeak based on the scatter in the observed properties of

Figure 10. Predicted IMF peak according to equation (6) ver-
sus cloud mass, for Outer Galaxy Survey clouds from Heyer et al.
(1998) and the Galactic Ring Survey clouds from Roman-Duval
et al. (2010), more massive than 103 M� (see main text for de-
tails about the cloud selection). The error bars give the mean and
standard deviation of mpeak in six logarithmic bins of Mcl.

star-forming regions. We can express mpeak as a function
of the nondimensional parameters of the simulation and
the total mass:

mpeak ⇡ 1.124 MtotMs
�4↵3/2

vir , (8)

which shows that for constant ↵vir and for standard Lar-
son relations, Mtot / L2 and �v / L1/2, mpeak is con-
stant. However, observed MCs have a range of values of
↵vir and yield Larson relations with a significant scat-
ter and with exponents in general di↵erent from those
standard values. Thus, our IMF model should predict
non-negligible IMF peak variations from cloud to cloud.

In order to quantify the observational scatter in mpeak
predicted by the model, we consider two of the largest
Galactic MC samples available: the MC catalog by Heyer
et al. (2001), extracted from a decomposition of the 12CO
FCRAO Outer Galaxy Survey (Heyer et al. 1998), and
the MC catalog by Roman-Duval et al. (2010), extracted
from the UB–FCRAO Galactic Ring Survey (Jackson
et al. 2006). To limit the distance and mass uncertain-
ties, Heyer et al. (2001) consider only MCs with circular
velocity < �20 km s�1, which yield a sample of 3901
clouds. Roman-Duval et al. (2010) provide an estimate
of the error in the mass determination of each of the 750
MCs in their catalog. We select a subsample of their
clouds with a mass error < 20%, in order to minimize
the scatter in cloud properties due to observational er-
rors instead of intrinsic cloud di↵erences. Finally, we
retain only MCs with mass > 103 M� (smaller clouds
would not yield a well-sampled IMF), resulting in 720
MCs from the Outer Galaxy Survey and 174 MCs from
the Galactic Ring Survey.

Figure 10 shows the estimated value of mpeak for the
clouds in the two observational samples. In the case of
the Outer Galaxy, mpeak shows a tendency to decrease
with increasing cloud mass, while mpeak is essentially
independent of cloud mass in the case of the Galactic
Ring. On the average, the expected IMF peak is more
than twice larger for clouds in the Outer Galaxy than for
those in the Galactic Ring, because of the larger values
of ↵vir in the Outer Galaxy clouds. For the most massive
clouds (few⇥105 M�), where ↵vir is relatively low also in
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Figure 8. Dependence of the IMF turnover on virial parameter
(or mean density, equivalently), from the four simulations with a
2563 root grid, light, high, heavy and massive, from bottom to top.
The IMFs are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr, respectively, after the formation
of the first star. Except for the top one, the histograms are shifted
vertically by a factor of 1/4 (heavy), 1/16 (high) and 1/64 (light).
The dotted lines are lognormal fits between the smallest mass bin
where the IMF appears to be complete and approximately 10 ⇥
mpeak. The IMF peak clearly shifts toward smaller values as the
mean density increases.
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which is a good approximation to the turnover mass in
the turbulent fragmentation models mentioned above,
providing an intuitive explanation of the origin of the
IMF peak. To test the validity of this prediction, we
express the IMF peak as

mpeak ⌘ ✏BE MBE,t, (6)

where ✏BE is a local e�ciency parameter analogous to
✏acc in the sink particle accretion model, and use the
simulations to verify whether it provides a good fit to
the numerical IMFs.

For this purpose, we use the four simulations light,
high, heavy, and massive with a root grid of 2563 cells
and six AMR levels, with four di↵erent values of the virial
parameter (see Table 1). The virial parameter is varied
by leaving the rms velocity constant and increasing or
decreasing the mean density (total mass) in the compu-
tational volume by a factor of two or four relative to the
reference run high (see § 3 and Table 1). The overdensity
threshold at which the root grid is refined is changed from
⇢ref = 10h⇢i in run high to ⇢ref = 20h⇢i, 5h⇢i, and 2.5h⇢i
in light, heavy, and massive, respectively, to keep the min-
imum Jeans number constant, at 14.4. The IMFs from

Figure 9. Values of the IMF peak, mpeak, from the lognormal
fits of the previous figure, plotted as a function of the virial pa-
rameter of each simulation (a proxy for the inverse of the mean gas
density at constant rms velocity and size). The filled circle shows
the value predicted by equation 6 for the simulation high, assuming
an e�ciency factor ✏BE = 0.64, in order to match exactly mpeak
measured from the simulation. Assuming this fixed value of ✏BE,
the open circles show the prediction of equation 6 for the other
three simulations. The measured value for the highest-density run
is larger than the prediction, possibly because of a decreasing nu-
merical convergence of the value of mpeak as this becomes smaller
with increasing mean density.

these four simulations are shown in Figure 8, where the
histograms are shifted vertically by a factor of four be-
tween consecutive runs, except for the top histogram, to
minimize the confusion of overlapping plots. The IMFs
are all sampled at SFE= 0.024, corresponding to a time
of 2.07, 0.83, 0.46, and 0.23 Myr after the formation of
the first star, for the runs light, high, heavy, and mas-
sive, respectively. We have chosen a rather low SFE for
this comparison because the run light has a very low
SFR↵ , such that to reach a much higher SFE the simu-
lation should be integrated for much longer than 2 Myr.
As commented above, on a scale of 4 pc the influence
of larger-scale feedbacks should become quite significant
after approximately 2 Myr, making this idealized setup
driven by a random force somewhat questionable at later
times. Despite the short timescale of the higher ↵vir runs
at SFE= 0.024, we have found that the value of mpeak
(and the ratios of its values from di↵erent runs) is already
reasonably stable to allow this comparison.

The dotted lines in Fig. 8 are lognormal fits of the IMFs
(the power law fit at larger masses is not possible in this
case because the high-mass tail is not developed yet at
this early time). The lowest-mass bin for the fit is based
on the approximate IMF completeness limit judged as in
the numerical convergence test, while the highest-mass
bin is approximately 10 ⇥ mpeak, assuming that the be-
ginning of the power law tail is also shifted to higher
masses as the mean density decreases. The IMF peak
clearly shifts toward smaller values as the mean density
increases, as predicted by the isothermal turbulent frag-
mentation model of the IMF. The best-fit values of the
lognormal peaks are shown in Fig. 9, plotted as a func-
tion of the ↵vir value of each run (a proxy for the inverse
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of the mean density at a fixed rms velocity and size).
The prediction of equation 6 is shown by the open cir-
cles, after normalizing the relation by the measured value
of mpeak in the run high. The normalization corresponds
to the choice ✏BE = 0.64, quite close to the related lo-
cal e�ciency parameter set in the sink particle accretion
model, ✏acc = 0.5.

Fig. 9 shows that the measured variation of mpeak with
the mean density is approximately consistent with the
prediction of equation 6. Although the slight discrepancy
in the case of the run massive may seem significant, it is
not significant if one takes into account the uncertainty
in the measured value for the run high. Furthermore,
because we have established that the value of mpeak in
the run high may not be fully converged (see Fig. 5), it is
also possible that the value of mpeak in the run massive
is even less converged, as the total mass in this run is
larger and the peak smaller than in the run high. The
increasingly higher lack of numerical convergence with
increasing mean density could then explain the observed
deviation from the prediction of equation 6.

We set the system rms velocity assuming a tempera-
ture of 10 K and the system size (or total mass) based on
a standard Larson velocity-size relation (see § 3). If we
chose not to follow the observed Larson velocity–size re-
lation, both the rms velocity and the size (or total mass)
of the system could be rescaled, as long as the nondimen-
sional parameters of the simulation, Ms and ↵vir, were
not changed. Thus, one may suspect that the predicted
IMF peak is consistent with the numerical IMFs only for
specific values of gas temperature or system size, but it
can be easily shown that this agreement is immune to
the rescaling of the simulation. The virial parameter can
be expressed as:

↵vir / Ms
2TM�2/3

tot ⇢�1/3
0 . (7)

Because both Ms and ↵vir are fixed in the simula-
tion, the mass can only be scaled according to Mtot /
T 3/2⇢�1/2

0 / MBE,0. This shows that imposing a value
for both Ms and ↵vir in the simulation implies a fixed
value of the ratio Mtot/MBE,0, and thus a fixed value of
Mtot/MBE,t. Thus, rescaling the temperature or size (or
total mass) of the system does not a↵ect our comparison
of the predicted IMF peak with the IMF peak from the
simulations.

To fully test the prediction of the turbulent fragmen-
tation model with respect to the IMF turnover (and the
width of the IMF as well), we should also consider the
dependence of mpeak on the sonic and Alfvénic rms Mach
number. Because all the simulations of this work have
the same Mach number, this important test will be ad-
dressed in a separate study.

5.2. Variability of the IMF turnover with environment

The theoretical and numerical prediction that the IMF
peak scales with MBE,t implies an environmental depen-
dence of the IMF. In previous works, we have already
stressed that if the virial parameter does not vary sig-
nificantly in starforming regions, and assuming standard
velocity–size and mass–size relations, the predicted IMF
peak should have only mild variations (Padoan et al.
2007). Here, we try to quantify the expected scatter of
mpeak based on the scatter in the observed properties of

Figure 10. Predicted IMF peak according to equation (6) ver-
sus cloud mass, for Outer Galaxy Survey clouds from Heyer et al.
(1998) and the Galactic Ring Survey clouds from Roman-Duval
et al. (2010), more massive than 103 M� (see main text for de-
tails about the cloud selection). The error bars give the mean and
standard deviation of mpeak in six logarithmic bins of Mcl.

star-forming regions. We can express mpeak as a function
of the nondimensional parameters of the simulation and
the total mass:

mpeak ⇡ 1.124 MtotMs
�4↵3/2

vir , (8)

which shows that for constant ↵vir and for standard Lar-
son relations, Mtot / L2 and �v / L1/2, mpeak is con-
stant. However, observed MCs have a range of values of
↵vir and yield Larson relations with a significant scat-
ter and with exponents in general di↵erent from those
standard values. Thus, our IMF model should predict
non-negligible IMF peak variations from cloud to cloud.

In order to quantify the observational scatter in mpeak
predicted by the model, we consider two of the largest
Galactic MC samples available: the MC catalog by Heyer
et al. (2001), extracted from a decomposition of the 12CO
FCRAO Outer Galaxy Survey (Heyer et al. 1998), and
the MC catalog by Roman-Duval et al. (2010), extracted
from the UB–FCRAO Galactic Ring Survey (Jackson
et al. 2006). To limit the distance and mass uncertain-
ties, Heyer et al. (2001) consider only MCs with circular
velocity < �20 km s�1, which yield a sample of 3901
clouds. Roman-Duval et al. (2010) provide an estimate
of the error in the mass determination of each of the 750
MCs in their catalog. We select a subsample of their
clouds with a mass error < 20%, in order to minimize
the scatter in cloud properties due to observational er-
rors instead of intrinsic cloud di↵erences. Finally, we
retain only MCs with mass > 103 M� (smaller clouds
would not yield a well-sampled IMF), resulting in 720
MCs from the Outer Galaxy Survey and 174 MCs from
the Galactic Ring Survey.

Figure 10 shows the estimated value of mpeak for the
clouds in the two observational samples. In the case of
the Outer Galaxy, mpeak shows a tendency to decrease
with increasing cloud mass, while mpeak is essentially
independent of cloud mass in the case of the Galactic
Ring. On the average, the expected IMF peak is more
than twice larger for clouds in the Outer Galaxy than for
those in the Galactic Ring, because of the larger values
of ↵vir in the Outer Galaxy clouds. For the most massive
clouds (few⇥105 M�), where ↵vir is relatively low also in
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Figure 12. Time evolution of the mass distribution of sink par-
ticles in the reference simulation high. The time of each IMF
since the formation of the first sink particle is given next to each
histogram. The histograms are shifted vertically by an arbitrary
value, except for the case of 0.03 Myr that shows the actual num-
ber of stars in each mass bin. The dotted lines are log-normal
fits between the smallest mass bin where the IMF appears to be
complete (based on a sharp cuto↵ at lower masses, more apparent
in histograms with narrower bins and corresponding to late times)
and 2 M�. The solid lines are power-law fits above 2 M�.

rest of the mass has to be accreted through a circum-
stellar disk fed by the same converging flows that had
assembled the prestellar core. In other words, the stel-
lar mass predicted by the PN02 model should be seen
as the total mass available to form a star, while the ac-
tual mass of a prestellar core (prior to its collapse into a
protostar) could be significantly smaller, at least in the
case of massive stars (see Figure 1 in Padoan & Nord-
lund (2011a)). This results in a di↵erence between the
prestellar core mass function (MF) and the stellar IMF,
with the prestellar core MF having a steeper high-mass
tail than the Salpeter IMF (Padoan & Nordlund 2011a).
In the case of low-mass stars, the stellar mass is not much
larger than the characteristic BE mass in the postshock
gas, so most of the core mass is assembled before the core
collapses.

Earlier turbulence simulations without self-gravity and
sink particles have already demonstrated the postshock
origin of prestellar cores as assumed in PN02 (Padoan
et al. 2001, 2007), at odd with the scenario of Hennebelle
& Chabrier (2008) and Hopkins (2012). Using a clump-
find algorithm (instead of sink particles), Padoan et al.
(2007) identified dense postshock cores containing many
Jeans masses (and not supported against self-gravity by
their turbulent pressure) in very large simulations of su-
personic MHD turbulence without self-gravity. They also
found that the core mass distribution was consistent with
a power law with the Salpeter slope, proving that such
cores could contain the mass reservoir responsible for
the formation of massive stars. Evidently, if self-gravity
had been present in the simulations, those massive cores
would have collapsed much before gathering their total
mass, and the rest of their mass would have been accu-
mulated over many free-fall times, as indeed shown by
more recent simulations with self-gravity and sink parti-

Figure 13. Time evolution of the IMF parameters derived from
the fits shown in the previous figure. The IMF peak is already
established after less then 1 Myr from the creation of the first sink
particles, although it is a bit larger around 1.5 Myr (top panel).
The power-law tail at large masses takes approximately 2 Myr to
develop beyond 10 M� and achieve a stable slope, �, consistent
with Salpeter’s value (bottom panel). The progressive build up of
the tail and the decreasing value of � are reflected by a gradual
increase in the width of the IMF, �m, during the initial 1.7 Myr
(middle panel).

cles, such as in the work by Padoan et al. (2014b). In
Padoan et al. (2014b), using a simulation with almost
identical physical and numerical parameters as the model
high in this work, we obtained nearly 1300 sink particles
over a time of 3.2 Myr, with a mass function closely fol-
lowing a Chabrier IMF at small masses and a Salpeter
IMF at masses larger than 1-2 M�. We used that sim-
ulation to argue that the large-scale infall from the tur-
bulent inertial flows feeding the protostars through an
accretion disk could explain the observed luminosity dis-
tribution of protostars. We also showed that, on average,
the time to gather 95% of the final stellar mass, t95, in-
creases with increasing final stellar mass, Mf , according
to t95 = 0.45 Myr⇥ (Mf/1M�)0.56, so it takes on average
over 1 Myr to form a 10 M� star (see Figure 13 in Padoan
et al. (2014b)). However, we did not see an accelerated
accretion rate as the stars gain mass, so our results are
at odds with the predictions of the competitive accretion
scenario (Bonnell et al. 2001; Bonnell & Bate 2006).

The dependence of the formation time on the final stel-
lar mass is confirmed by the simulations of this work.
Figure 11 shows the dependence of t95 on Mf , for our
reference simulation high with 2563 root grid. Only stars
that have practically stopped accreting by the end of the
simulation are included in the plot, to insure that the
value of t95 is not artificially truncated by the finite in-
tegration time. This is enforced by selecting only the
sink particles whose accretion rate averaged over the fi-
nal 100 Kyr of the simulation is less than 10% of their
accretion rate averaged from their birth time to the time
they reach 95% of their final mass. This selection re-
tains 72.5% of the sink particles. We have verified that a
much more stringent selection, where the accretion rate
in the last 100 Kyr has dropped to less than 0.005% of its
lifetime average, retains only 28% of the sink particles,
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surveys, the mean and standard deviations are mpeak =
0.6± 0.25 M� and mpeak = 0.26± 0.09 M� for the outer
and inner Galaxy respectively, with over 90% of these
star-forming clouds yielding values in the range 0.1 <
mpeak < 1.0 M�.

This scatter in the peak of the stellar IMF predicted
for di↵erent MCs is the consequence of the scatter in the
velocity-size and mass-size relations, or, equivalently, the
scatter in the relation between virial parameter and mass
(see Figures 31, 33, 34 and 35 in Padoan et al. (2016b)
and Figures 5, 6 and 7 in Padoan et al. (2016a)). We have
recently shown that supernova (SN) driven turbulence
generates MCs with properties consistent with the ob-
servations (Padoan et al. 2016b; Pan et al. 2016; Padoan
et al. 2016a). Because of this successful comparison be-
tween MCs selected from our simulation and the observa-
tions, we can use the simulation to infer that most of the
scatter in the observational Larson relations may origi-
nate from true physical variations from cloud to cloud,
rather than be dominated by statistical uncertainties in
the observational measurements. Thus, we conclude that
the predicted variations of the IMF peak from cloud to
cloud, illustrated by Figure 10, are realistic. This re-
sult is consistent with the recent finding that the IMF
of young nearby stellar clusters show significant varia-
tions from region to region. Using a Bayesian analysis
of the IMFs of eight young Galactic clusters, Dib (2014)
has demonstrated that the posterior probability distribu-
tion function of the IMF parameters of di↵erent clusters
do not generally overlap within the 1� uncertainty level.
In the case of the Chabrier plus power-law fit, he de-
rives IMF peak values in the range 0.29-0.69 M�; in the
case of the fit with Parravano’s tapered power law, the
range is even larger, 0.14-0.80 M�.1 These observed IMF
peak values are consistent with the ones predicted by our
model applied to the star-formation conditions of typical
Galactic MCs. Thus, their scatter is consistent with that
expected as a consequence of cloud to cloud variations in
Ms and ↵vir at fixed cloud mass (essentially the scatter
in the Larson relations).

5.3. Variability of the IMF from time evolution

As explained in Padoan & Nordlund (2011a), the PN02
turbulent fragmentation model implies a time evolution
of the IMF, because more massive stars are the result
of converging motions from larger scales in the turbu-
lent flow, requiring larger time to assemble the stellar
mass (the turnover time of turbulent eddies increases
with their size) than lower mass stars. Therefore, at
very early times, massive stars are still not fully formed,
as they require a timescale comparable to the turnover
time of the largest turbulent scales in the flow, of order
of a Myr in typical MCs. This is much longer than the
formation time of 100 Kyr in the model of massive star
formation of McKee & Tan (2002, 2003).

It should be stressed that the mechanism of massive
star formation (and thus the origin of the Salpeter slope
of the IMF tail) in the turbulent fragmentation models
of Hennebelle & Chabrier (2008) and Hopkins (2012) is
quite di↵erent than in PN02, and, unlike PN02, may lead
to the McKee and Tan scenario of massive star formation.
In these models, massive stars originate from massive

1 We are neglecting the case of NGC2024 that has only 69 stars.

Figure 11. Formation time of sink particles when 95% of their
final mass has been assembled, versus sink particle final mass, de-
fined as the sink-particle mass at the end of the simulation high,
at t = 2.5 Myr. The squared symbols and the error bars show
the average and standard deviation of t95 computed inside loga-
rithmic intervals of the final mass. The solid black line is a lin-
ear fit to the logarithmic values of t95 versus final mass, giving
t95 = 0.51Myr (Mf/M�)0.58, and the dashed line is an approxi-
mate lower envelope of the plot, corresponding to a constant infall
rate of 0.7⇥ 10�5 M� yr�1.

cores that manage to exceed their Jeans mass. The rea-
son why a large mass is needed to exceed the Jean mass
is that the turbulence is included as a source of pressure
support defining the Jeans mass, despite the fact that
such a generalization of the Jeans mass is actually valid
only in the case that the turbulent outer scale is much
smaller than the core size and the turbulent velocity is
much smaller than the speed of sound (Chandrasekhar
1951), both conditions being largely violated in the con-
text of these models. The collapse of such a massive core
cannot occur until it is fully formed, meaning until it has
exceeded this turbulent Jeans mass. Once that happens,
the core collapses and forms a massive star essentially in
a free-fall time, similarly to the scenario of the McKee
and Tan model. However, massive prestellar cores as
predicted by these turbulent fragmentation models may
have too low gas density (too large sizes), on average,
compared with observed cores, or even with the initial
conditions of the McKee and Tan model, because they
only need to be mild density fluctuations in the turbulent
flow, rather than postshock regions.

Turbulent pressure support against self-gravity plays
no role in PN02, where the turbulence is only viewed as a
source of density enhancement through shocks. Prestel-
lar cores are assumed to emerge in the postshock gas,
where the turbulence has been largely dissipated. The
inertial converging flows feeding such postshock cores can
accumulate enough mass to form a massive star, over a
characteristic turnover time on the scale of such flows,
much longer than the free-fall time in the postshock gas.
At the postshock density, such mass would be many times
larger than the Jeans mass (excluding support from tur-
bulent motions that is not important in the postshock
gas), so the core cannot be supported against collapse
for the whole time necessary to gather all the available
mass. As soon as the critical mass for collapse in the
postshock gas has been reached, a protostar of interme-
diate mass is formed by the collapse of the core, and the

It takes time for a star to form:
• Massive stars do not form through massive cores
• Massive stars are not due to competitive accretion
Rather we find that matter is fall in through inertial flows and there is
a maximum accretion rate that can be sustained – see poster P30 and
talk by Padoan
Consequence: the IMF only emerges after ≈1.5 – 2 Myr
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Fig. 1. a) Mid-infrared Spitzer composite image (red: 8 µm; green: 4.5 µm; blue: 3.6 µm) of SDC335. The 6 filaments identified by eye are
indicated with yellow dashed lines, emphasizing their converging pattern. The di↵use 4.5 µm emission associated with the two IR sources in the
centre is usually interpreted as a signature of powerful outflow activity. The positions of the two cores are marked with black crosses. b) Herschel

column density image of SDC335. The locations of the filaments and cores are marked similarly as in the a) panel. The final angular resolution
of this image is 2500 (yellow circle), that of Herschel at 350 µm (see text). The contours range from 3.5 ⇥ 1022 to 9.5 ⇥ 1022 cm�2 in steps of
2 ⇥ 1022 cm�2, and from 2.15 ⇥ 1023 to 4.15 ⇥ 1023 cm�2 in steps of 1 ⇥ 1023 cm�2. The two yellow contours define the regions in which we
calculated the SDC335 and Centre region masses quoted in Table 1. c) ALMA 3.2 mm dust continuum emission of the central region of SDC335
where two cores are identified, MM1 and MM2. The rms noise is 0.4 mJy/beam. The contours range from 2 to 22 in steps of 5 mJy/beam, and
from 22 to 62 in steps of 10 mJy/beam. The yellow ellipse represents the ALMA beam size.

witnessing the early stages of the formation of, at least, two mas-
sive stars.

The goal of this paper is to map the dense gas kinematics of
SDC335 and analyse it in the context of massive star formation
scenarios. In Sect. 2 we describe the observations. In Sect. 3
we discuss the mass partition in SDC335, and Sect. 4 presents
observations of the SDC335 dense gas kinematics. Finally, we
discus our results and their implications in Sect. 5, the summary
and conclusions are presented in Sect. 6.

2. Observations

2.1. Spitzer and Herschel observations

We used publicly available1
Spitzer GLIMPSE data (Churchwell

et al. 2009). The angular resolution of the 8 µm data is ⇠200.
We also used the PACS (Poglitsch et al. 2010) 160 µm and
SPIRE (Gri�n et al. 2010) 350 µm Herschel (Pilbratt et al. 2010)
data from the Hi-GAL survey (Molinari et al. 2010). These data
were reduced as described in Traficante et al. (2011), using the
ROMAGAL map making algorithm. The nominal angular reso-
lution at these two wavelengths are 1200 and 2500.

2.2. Mopra observations

In May 2010 we observed SDC335 with the ATNF Mopra
22 m single-dish telescope. We observed transitions including
HCO+(1�0), H13CO+(1�0) and N2H+(1�0) in a 50⇥50 field cen-
tred on SDC335. We performed on-the-fly observations, switch-
ing to an o↵-position free of dense gas emission. Pointing was
checked every hour and was found to be better than 1000. We used
the zoom mode of the MOPS spectrometer providing a velocity
resolution of 0.1 km s�1. The angular resolution of these 3 mm

1 http://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE

Mopra observation is ⇠3700 and the rms noise is 0.1 K on the T
⇤
A

scale (⇠0.2 K on the Tmb scale because the beam e�ciency fac-
tor is ⇠2 at 93 GHz on Mopra � Ladd et al. 2005).

2.3. ALMA observations

In September and November 2011 we observed SDC335
at 3 mm wavelength with the 16 antennas of ALMA (Cycle 0) in
its compact configuration. We performed an 11-pointing mosaic
covering the entire area seen in extinction with Spitzer (Fig. 1a).
We simultaneously observed the 3.2 mm dust continuum, along
with the CH3OH(13�12) and N2H+(1�0) transitions at a spec-
tral resolution of ⇠0.1 km s�1. Flux and phase calibration were
performed on Neptune and B1600-445, respectively. The data
were reduced using CASA2 (McMullin et al. 2007). The synthe-
sized beam is 5.600 ⇥4.000 with a position angle of +97�. The rms
noise in the continuum is 0.4 mJy/beam, while for the line we
reach an rms sensitivity of 14 mJy/beam (⇠0.08 K).

As with any interferometer, ALMA filters out large-scale
emission. To recover this emission, we used the Mopra single-
dish data to provide the short-spacing information, for which
we used the GILDAS3 software. This combination significantly
improved the image quality, in particular in the central re-
gion of SDC335. The rms noise on these combined datacubes
is 0.14 Jy/beam (⇠0.8 K), significantly higher than the ALMA-
only dataset. This reflects the higher noise of the Mopra dataset
per ALMA beam.

3. Mass partition in SDC335

The mid-infrared composite image of SDC335 is displayed
in Fig. 1a. In extinction we easily identify a network of six

2 http://casa.nrao.edu
3 http://www.iram.fr/IRAMFR/GILDAS
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Discussion points
• We find numerical evidence that the IMF is not universal, but

depends on environment.

• The environmental dependence of the peak can be understood
in the framework of turbulent fragmentation à there is a
“simple” connection between cores and low-mass stars?

• Can we observe the time-dependence of the IMF; what does it
tell us about accretion time-scales?

• Extreme star formation regions may be an interesting window
to test our theories for the IMF. But important locally driven
feedback (radiation, outflow) may limit applicability.



Numerical Convergence
• Non-trivial to reach convergence – high resolution needed
• In addition, multiple systems will show up with increasing resolution
• Convergence debated! Guszejnov+ 2018, Lee & Hennebelle 2018a,b, suggest

continous fragmentation, BUT only include HD
• B-field regulating small fragments by ”non-thermal” pressure floor?
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