Formation/Evolution of Molecular Clouds Shu-ichiro Inutsuka (Nagoya University)

Many Surveys: Herschel, THOR, FUGIN, CHIMPS, CHaMP,...

Early Phase of Star Formation (EPoS) 14-18 May, 2018 @Ringberg Castle, Germany

Outline

1. Basics & Observational Evidence 2. Characteristic Timescales 1Gyr, 20Myr, 1Myr 3. Formation/Evolution of Molec. Clouds Phase Transition, Filaments-Sheets-Bubbles, Core Mass Function, Integrated Scenario 4. Dispersal of Molecular Clouds SF Efficiency, Cloud Mass Function 5. Open Questions

Schmidt-Kennicutt Law of SF

FUGIN

FOREST Unbiased Galactic plane Imaging survey with Nobeyama 45-m telescope

Observed areas of the CO J=1-0 survey projects, where the corresponding spatial resolutions of the surveys are less than 2pc.

• 12 CO, 13 CO, C¹⁸O survey

- Period: 2014~2017
- Data will be open at JVO

Slide by Torii

FUGIN

Test region (3-color pv map)

Test region (3-color pv map)

Results (¹³CO and C¹⁸O cloud IDs)

Mass Fractions of ¹²CO, ¹³CO, & C¹⁸O 1) Total M_{H2} of the ¹²CO clouds ~ 2.7×10^7 Mo - The ¹²CO stream accounts for 98%. 2) Total M_{H2} of the ¹³CO clouds ~ 8.5×10^6 Mo - $(2)/(1) \sim 31\%$ (Data pixel volume fraction = 9%) 3) Total M_{H2} of the ¹³CO clouds with C¹⁸O ~ 6.3×10^6 Mo - (3) / (1) ~ 23% 4) Total M_{H2} of the C¹⁸O clouds ~ 4.7×10^5 Mo - (4) / (1) ~ $\frac{2\%}{2\%}$ (Data pixel volume fraction = 0.1%)

Torii et al. (2018) to be submitted

C¹⁸O-Mass/¹²CO-Mass ~ 0.02 $\leftarrow \rightarrow t_{dense gas} / t_{gas} \sim 0.02$

Characteristic Timescales

Gas Consumption: $t_{gas} = \Sigma_{gas} / \Sigma_{SFR} \sim 10^3 \text{ Myr}$ Dense Gas Consumption: $t_{dense gas} \sim 20 \text{ Myr}$ Dynamical Timescale: $t_{dyn} = 1 \text{ Myr} << t_{Gal.Rot} \sim 10^2 \text{ Myr}$

Dynamical Timescale (e.g., McKee & Ostriker 1977)

- SN Explosion Rate in Galaxy... 1/(100yr)
- Expansion Time...1Myr
- Expansion Radius... 100pc $(10kpc)^2 \times 100pc$ $(10^{-2} yr^{-1}) \times (10^6 yr) \times (100pc)^3 = 10^{10} pc^3 \sim V_{Gal.Disk}$

Expanding HII regions can also be important!

Formation of Molecular Clouds

Radiative Equilibrium for a given density

e.g., Wolfire et al. 1995, Koyama & SI 2000

Shock Propagation into WNM

Koyama & Inutsuka (2002) ApJ 564, L97

Property of "Turbulence"...Subsonic

δv < C_{S,WNM} → Kolmogorov Spectrum 2D: Hennebelle & Audit 2007; see also Gazol & Kim 2010

-5

x [pc]

Vazquez-Semadeni -10 et al. 2011

t = 7.6 Myr, log n/lem

-24

20 µG

Cloud Formation in Magnetized WNM

Can compression of magnetized WNM create molecular clouds?

Ref. Inoue & SI 2008, 2009, 2012;

Inoue & SI (2009) ApJ 704, 161

Ambipolar

diffusion included

Inoue & SI (2012) ApJ 759, 35

<u>Two-Fluid</u> Resistive MHD + Cooling/Heating + Thermal Conduction + Chemistry (H_2 , CO,...)

See also van Loo+2007, 2008, 2012

Compression of Magnetized WNM

Can direct compression of magnetized WNM create molecular clouds?

/ [pc] 4 6 \rightarrow No, It only creates 2 multi-phase HI clouds! 0 10 15 20 25 30

Inoue & SI (2008) ApJ 687, 303; Inoue & SI (2009) ApJ 704, 161

Essentially same result by

van Loo+2007; Heitsch+2009; Körtgen & Banerjee 2015; Valdivia+2016; Iwasaki+2018

Further compression of HI clouds required!

Compression of a HI Cloud

Iwasaki+2018

 $x|\mathbf{pc}$

Formation of Molecular Clouds

We need multiple episodes of compression.

Timescale of Molecular Cloud Formation ~ a few 10⁷yr *Inoue & SI* (2012) 759, 35

Next Question:

What happens at further compression after a significant fraction of gas become molecular?

Further Compress. of Mole. Clouds

Further8Compression of7Molecular Cloud6(face-on view of5compressed layer)4

→ Magnetized ³
Massive Filaments 2
& Striations ¹

0

Self-Gravity Included, SI, Inoue, Iwasaki, & Hosokawa 2015

Filament Formation Behind MHD Shock

* Compression is weak in the z-direction due to magnetic pressure.

 \rightarrow A MHD shock compression of a dense blob leads to a filament formation.

Filament \perp Compressed Magnetic Field

Observational Evidence for Sheet?

2) Coherent Flows around a Filament
←
Accretion along a sheet?
Andre 2017 (arXiv:1710.01030)
Shimajiri+2018

1) Thickness = N/n

See also "CVD" by Qian, Li, Offner, & Pan 2015

Mass Function of Cores in a Filament

Inutsuka 2001, ApJ 559, L149

Line-Mass Fluctuation of Filaments Initial Power Spectrum $P(k) \propto k^{-1.5}$

Mass Function $dN/dM \propto M^{-2.5}$

Observation of Both Fluctuation Spectrum and Mass Function

→ Clear and Direct Test!

 $t/t_{ff} = 0$ (dotted), 2, 4, 6, 8, 10 (solid)

"A possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function" Roy, André, Arzoumanian et al. (2015) A&A 584, A111

[pc] 1.0 0.4 SPIRE 250 µm 173 DEC bin 0.8 per along 47 Relative nos. 0.6 20 0.2 Offset 0.4 0.2 Gaussian 67 0.0 0.0 0.2 0.4 0.6 0.0 -0.4-0.20.0 0.2 0.4 Offset along RA [pc] $\delta(z) = M_{line}/ < M_{line}) > -1$ 25 pi. 0.0 0.2 0.4 0.6 0.8 1.0 P(k)1.2 per 14 a) 20 cm⁻²] filaments 12 15 N_{H2} [10²¹ 10 10 F ð 1.6 ± 0.3 . No 25 0 5 10 15 20 30 -2.5-2.0-1.5 -1.0-0.5Offset [arcmin] Power spectrum slope, α

Supporting Inutsuka 2001; c.f., Li, Hennebelle & Chabrier 2017

Schmidt-Kennicutt Law of SF

Star Formation Efficiency in Dense Gas

Herschel Observation (e.g., Andre+2014, Könyves+2015)

 $M_{\rm core} / M_{\rm filament} \leq 15\%$ Why? Star Formation Efficiency in Dense Core: ε_{core} $\mathcal{E}_{core} \sim 33\%$ (ex. Collapse Calc. by Machida+) Star Formation Efficiency in a Filament: $\mathcal{E}_{dense gas}$ $\rightarrow \mathcal{E}_{\text{dense gas}} = M_{\text{core}} / M_{\text{filament}} \times \mathcal{E}_{\text{core}} \sim 5\%$ Consumption Timescale of Dense Gas: $t_{dense gas}$ $t_{\text{dense gas}}^{-1} = (10^6 \text{ yr})^{-1} \times \mathcal{E}_{\text{dense gas}} = (20 \text{ Myr})^{-1}$ $t_{\text{dense gas}} \sim 20 \text{Myr} \quad (\text{eg. Lada}+2010, \text{Andre}+2014)$

Massive Stars through Filaments: Archetype?

- Uniform but Different Velocity in Each Filament
- Infall through Filament ~ 10⁻³ M_☉/yr
 Nicely Understood in Filament Paradigm

Palouš, Deharveng, Zavagno,...)

Observed (Colliding) Bubbles

THOR Survey (Beuther+)

See also 10³ HII region statistics by Palmeirim+2017!

Zychová & Ehlerová 2016

53.70 53.40 53.10 52.80

Galactic longitude

54.30 54.00

54 60

RADIO CONTINUUM

Network of Expanding Shells

Velocity Dispersion of Clouds

Network of Expanding Shells

Natural Acceleration of Star Formation

Mass Increase in Supercritical Filaments

→Accelerated SF

Also in Lupus, Chamaeleon, ρ Ophiuchi, Upper Scorpius, IC 348, and NGC 2264

How Many Generations of Filaments?

Star Formation Efficiency in Dense Gas: $\mathcal{E}_{dense gas}$

$$\bullet \varepsilon_{\text{dense gas}} = M_{\text{core}} \times \varepsilon_{\text{core}} / M_{\text{filament}} \sim 5\%$$

Typical Mass of Star Forming Filaments: $L \sim 3pc$, $M_{\text{Line}} \sim 2C_s^2/G$ $M = M_{\text{Line}} \times L \sim 60M_{\text{sun}}$

Total Mass of Stars Created in a Filament:

$$\rightarrow 60M_{\rm sun} \times \mathcal{E}_{\rm dense \ gas} \sim 3M_{\rm sun}$$

Total Mass of YSOs: M_{*total} # of Filaments to Form Stars = $M_{*total}/3M_{sun}$

Multiple Generations of Filaments Needed!

Open Questions

- 1) Why Filament Width ~ $0.1 \text{pc}? \rightarrow$ SF Threshold for N
- 2) Why Upper Limit for Core Formation Efficiency?

$M_{\rm core}/M_{\rm filament} < 15\% \rightarrow t_{\rm dense gas} \sim 20 { m Myr}$

3) Core Mass Function for Massive Cores?

4) ...

(ex., Motte+2018...)

Which is determinant, $N_{\rm H}$ or Filament-Width?

Herschel filaments have almost the same radii!

Aquila: <u>2R=0.1pc</u> & $M_L = 2C_s^2/G \rightarrow N_H \approx 10^{22} \text{cm}^{-2}$ (A_v= several) Polaris: <u>2R=0.1pc</u> & $M_L < 2C_s^2/G \rightarrow N_H < 10^{22} \text{cm}^{-2}$ (A_v< several) "Column Density Threshold" is a consequence?

Summary

- WNM → Multi-Phase HI → … → Molecular Clouds
- 3 Timescales for Cloud Evolution, 1Myr, 30Myr, 1000Myr
- Fragmentation of Filaments → Core Mass Function
- Bubble-Dominated Formation of Molecular Clouds
 - → Unified Picture of Star Formation
 - $\delta v_{cloud-cloud} \sim 10^1 km/s$
 - Filaments in Sheet-Like Cloud
 - Star Formation Efficiency: $\varepsilon_{SF} \sim 10^{-2}$
 - Schmidt-Kennicutt Law
 - Accelerating Star Formation
 - Slope of Cloud Mass Func = $1+T_{form}/T_{dis} \sim 1.7$

SI, Inoue, Iwasaki, & Hosokawa 2015, A&A **580**, A49 Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ **836**, 175

Dispersal of Molecular Clouds

How to Stop SF?

Radiative Feedback to Parental Molecular Clouds

See also *Kuiper+*, *Rosen & Krumholz*, *Walch+*, *Peters+*, *Padoan+*, and many others

Expanding HII Region in a Molecular Cloud

Disruption of <u>Magnetized</u> Molecular Clouds

Feedback due to UV/FUV in a Magnetized Cloud by MHD version of *Hosokawa & SI* (2005,2006ab)

 $M_{g}(M_{*})$ 10⁵ 10⁴ gas mass: M $_{
m g}$ [M $_{\odot}$] 10³ **Non-Star Forming Gas** 10² 10¹ HII нι 10⁰ CO-dark H2 HII + HI + CO-dark H2 10⁻¹ 10 100

Central Stellar Mass, M_* / M_{\odot}

 $30M_{\odot}$ star destroys 10^5M_{\odot} H₂ gas in 4Myrs!

(SI, Inoue, Iwasaki, & Hosokawa 2015 A&A 580, A49)

Disruption of <u>Magnetized</u> Molecular Clouds

Feedback due to UV/FUV in a Magnetized Cloud by MHD version of *Hosokawa & SI* (2005,2006ab)

 $30M_{\odot}$ star destroys 10^5M_{\odot} H₂ gas in <u>4Myrs</u>!

 \rightarrow

(SI, Inoue, Iwasaki, & Hosokawa 2015 A&A 580, A49)

Star Formation Efficiency, KS-Law

 $10^5 M_{\odot}$ H₂ destroyed by $M_* > 30 M_{\odot}$ in 4Myrs!

If $M_{\rm total} \sim 10^3 M_{\odot}$ stars

→ ~1 Massive (> $30M_{\odot}$) Star for Standard IMF

Galactic Population of Molecular Clouds ???

Mass Function of Molecular Clouds

$$dn = N_{cl}(M_{cl})dM_{cl}$$

$$\frac{\partial N_{cl}}{\partial t} + \frac{\partial}{\partial M_{cl}} \left(N_{cl} \frac{dM_{cl}}{dt} \right) = -\frac{N_{cl}}{T_{depl}}$$
Self-Growth
$$M_{cl}$$
In steady state
$$\rightarrow N_{cl}(M_{cl}) = \frac{N_0}{M_0} \left(\frac{M_{cl}}{M_0} \right)^{-\alpha}, \alpha = 1 + \frac{T_{form}}{T_{dis}}$$

$$T_{dis} \sim 14 \text{Myr} \& T_{form} \sim 10 \text{Myr} \rightarrow \alpha = 1.7$$

(SI, Inoue, Iwasaki, & Hosokawa 2015 A&A 580, A49)

Effect of <u>Cloud-Cloud Collision</u> on <u>Mass Function</u> of Molecular Clouds

Formulation of Coagulation Equation

$$\begin{split} \frac{\partial N_{\rm cl}}{\partial t} + \frac{\partial}{\partial M} \left(N_{\rm cl} \frac{\mathrm{d}M}{\mathrm{d}t} \right) &= -\frac{N_{\rm cl}}{T_{\rm d}} \\ &+ \frac{1}{2} \int_0^\infty \int_0^\infty K(m_1, m_2) n_{\rm cl,1} n_{\rm cl,2} \\ &\delta(m - m_1 - m_2) \mathrm{d}m_1 \mathrm{d}m_2 \\ &- \int_0^\infty K(m, m_2) n_{\rm cl} n_{\rm cl,2} \mathrm{d}m_2 \,. \end{split}$$

Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ **836**, 175 Kobayashi, Kobayashi, & SI 2018, PASJ in press

Resultant Mass Functions

Case without Cloud-Cloud Collision

self-growth & self-dispersal only

Assumption: $\delta v_{cloud-cloud} = 10 \text{km/s}$

Resultant Mass Functions

Case with Cloud-Cloud Collision

CCC does not alter GMC mass function significantly! Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ 836, 175

Slope of Cloud Mass Function

Steady State Mass Function of Molecular Clouds

$$\rightarrow N_{\rm cl}(M_{\rm cl}) = \frac{N_0}{M_0} \left(\frac{M_{\rm cl}}{M_0}\right)^{-\alpha}, \alpha = 1 + \frac{T_{\rm form}}{T_{\rm dis}}$$

Typically, $T_{dis} \sim T_{form} + 4Myr \rightarrow \alpha = 1.7$ In low density region (Inter-Arm Region) Larger $T_{form} > T_{dis} \rightarrow$ Larger α In high density region (Arm Region) Smaller $T_{form} \rightarrow$ Smaller α \rightarrow GMCs in M51 (Colombo+2014)

©Annie Hughes, MPIA

Variation of GMC Mass Function in M51

Open Question

Filaments have a characteristic width ~ 0.1 pc

Example of a filament radial profile

D. Arzoumanian et al. 2011, A&A, 529, L6

Ph. André - 15th Paris Cosmology Colloquium - 22/07/2011

Open Questions

- 1) Why Filament Width ~ $0.1 \text{pc}? \rightarrow$ SF Threshold for N
- 2) Why Upper Limit for Core Formation Efficiency?

$$M_{\rm core}/M_{\rm filament} < 15\% \rightarrow t_{\rm dense \ gas} \sim 20 \ {
m Myr}$$

- 3) $t_{SF} \sim 10 Myr? \& Why? \Rightarrow t_{gas} \sim 1.4 Gyr$
- 4) Core Mass Function for Massive Cores?
 - (ex., Motte+2018...)

Summary

- Fragmentation of Filaments → Core Mass Function
- Bubble-Dominated Formation of Molecular Clouds
 - Unified Picture of Star Formation
 - $\delta v_{cloud-cloud}$ ~ $10^{1} km/s$
 - Star Formation Efficiency: $\varepsilon_{SF} \sim 10^{-2}$
 - Schmidt-Kennicutt Law
 - Accelerated Star Formation
 - Slope of Cloud Mass Func =1+ $T_{form}/T_{dis} \sim 1.7$

SI, Inoue, Iwasaki, & Hosokawa 2015, A&A **580**, A49 Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ **836**, 175 Kobayashi, Kobayashi, & SI 2018, PASJ in press

Which is determinant, $N_{\rm H}$ or Filament-Width?

Herschel filaments have almost the same radii!

Aquila: <u>2R=0.1pc</u> & $M_L = 2C_s^2/G \rightarrow N_H \approx 10^{22} \text{cm}^{-2}$ (A_v= several) Polaris: <u>2R=0.1pc</u> & $M_L < 2C_s^2/G \rightarrow N_H < 10^{22} \text{cm}^{-2}$ (A_v< several) "Column Density Threshold" is a consequence?