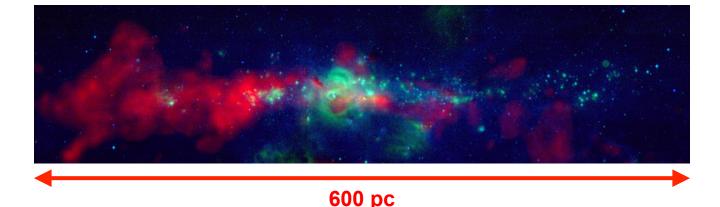
The Critical Role of Galactic Dynamics in Regulating the Spatial Structure, Kinematics, and SFR

J. M. Diederik Kruijssen Heidelberg University

P22

6....

J. M. Diederik Kruijssen – Heidelberg University


Defining features of Central Molecular Zone (CMZ): a unique laboratory

◆ Gas occupies a stream on an eccentric orbit of R ~ 60-120 pc Molinari+11; Longmore+13b; Kruijssen+15; Henshaw+16


Fully compressive tidal field at R = 40-120 pc

Kruijssen+15; Lucas 15; Kruijssen+18

Strong shear with V/R ~ 1.7 Myr⁻¹ (~100x higher than at solar radius) Krumholz & Kruijssen 15; Krumholz+17; Jeffreson+18

P22

J. M. Diederik Kruijssen – Heidelberg University

$$\sigma_{\rm virial} = 0.52 \,\rm km \, s^{-1} \, \left(\frac{\Sigma_{\rm GMC}}{10^2 \,\rm M_\odot \, pc^{-2}}\right)^{1/2} \, \left(\frac{R}{1 \,\rm pc}\right)^{1/2} \qquad {\rm Heyer+09}$$

$$\sigma_{\text{virial}} = 0.52 \text{ km s}^{-1} \left(\frac{\Sigma_{\text{GMC}}}{10^2 \text{ M}_{\odot} \text{ pc}^{-2}} \right)^{1/2} \left(\frac{R}{1 \text{ pc}} \right)^{1/2} \text{ Heyer+09}$$

$$\sigma_{\text{shear}} = 0.67 \text{ km s}^{-1} \left(\frac{\Omega_{\text{rot}}}{1.7 \text{ Myr}^{-1}} \right) \left(\frac{R}{1 \text{ pc}} \right) \text{ (CMZ)} \text{ Kruijssen+18}$$

$$\sigma_{\text{shear}} = 0.30 \text{ km s}^{-1} \left(\frac{\Omega_{\text{rot}}}{0.026 \text{ Myr}^{-1}} \right) \left(\frac{R}{10 \text{ pc}} \right) \text{ (solar neighbourhood)}$$

$$\begin{split} \sigma_{\rm virial} &= 0.52 \,\mathrm{km \, s^{-1}} \, \left(\frac{\Sigma_{\rm GMC}}{10^2 \,\mathrm{M}_{\odot} \,\mathrm{pc^{-2}}}\right)^{1/2} \, \left(\frac{R}{1 \,\mathrm{pc}}\right)^{1/2} & \mathrm{Heyer+09} \\ \sigma_{\rm shear} &= 0.67 \,\mathrm{km \, s^{-1}} \, \left(\frac{\Omega_{\rm rot}}{1.7 \,\mathrm{Myr^{-1}}}\right) \, \left(\frac{R}{1 \,\mathrm{pc}}\right) \, (\mathrm{CMZ}) & \mathrm{Kruijssen+18} \\ \sigma_{\rm shear} &= 0.30 \,\mathrm{km \, s^{-1}} \, \left(\frac{\Omega_{\rm rot}}{0.026 \,\mathrm{Myr^{-1}}}\right) \, \left(\frac{R}{10 \,\mathrm{pc}}\right) \, (\mathrm{solar \, neighbourhood}) \\ \rightarrow \sigma_{\rm shear} > \sigma_{\rm virial} & \mathrm{if} \, \left(\frac{n_{\rm GMC}}{2.2 \times 10^3 \,\mathrm{cm^{-3}}}\right)^{1/2} < \left(\frac{\Omega_{\rm rot}}{1.7 \,\mathrm{Myr^{-1}}}\right) \, (\mathrm{CMZ}) \\ \left(\frac{n_{\rm GMC}}{3.0 \,\mathrm{cm^{-3}}}\right)^{1/2} < \left(\frac{\Omega_{\rm rot}}{0.026 \,\mathrm{Myr^{-1}}}\right) \, (\mathrm{solar \, neighbourhood}) \end{split}$$

P22

$$\sigma_{\text{virial}} = 0.52 \text{ km s}^{-1} \left(\frac{\Sigma_{\text{GMC}}}{10^2 \text{ M}_{\odot} \text{ pc}^{-2}}\right)^{1/2} \left(\frac{R}{1 \text{ pc}}\right)^{1/2} \text{ Heyer+09}$$

$$\sigma_{\text{shear}} = 0.67 \text{ km s}^{-1} \left(\frac{\Omega_{\text{rot}}}{1.7 \text{ Myr}^{-1}}\right) \left(\frac{R}{1 \text{ pc}}\right) (\text{CMZ}) \text{ Kruijssen+18}$$

$$\sigma_{\text{shear}} = 0.30 \text{ km s}^{-1} \left(\frac{\Omega_{\text{rot}}}{0.026 \text{ Myr}^{-1}}\right) \left(\frac{R}{10 \text{ pc}}\right) \text{ (solar neighbourhood)}$$

$$\rightarrow \sigma_{\text{shear}} > \sigma_{\text{virial}} \text{ if } \left[\left(\frac{n_{\text{GMC}}}{2.2 \times 10^3 \text{ cm}^{-3}}\right)^{1/2} < \left(\frac{\Omega_{\text{rot}}}{1.7 \text{ Myr}^{-1}}\right) (\text{CMZ}) \right]$$

$$\left(\frac{n_{\text{GMC}}}{3.0 \text{ cm}^{-3}}\right)^{1/2} < \left(\frac{\Omega_{\text{rot}}}{0.026 \text{ Myr}^{-1}}\right) \text{ (solar neighbourhood)}$$

$$dense \text{ GMC}$$

P22

$$\sigma_{\text{virial}} = 0.52 \text{ km s}^{-1} \left(\frac{\Sigma_{\text{GMC}}}{10^2 \text{ M}_{\odot} \text{ pc}^{-2}}\right)^{1/2} \left(\frac{R}{1 \text{ pc}}\right)^{1/2} \text{ Heyer+09}$$

$$\sigma_{\text{shear}} = 0.67 \text{ km s}^{-1} \left(\frac{\Omega_{\text{rot}}}{1.7 \text{ Myr}^{-1}}\right) \left(\frac{R}{1 \text{ pc}}\right) (\text{CMZ}) \text{ Kruijssen+18}$$

$$\sigma_{\text{shear}} = 0.30 \text{ km s}^{-1} \left(\frac{\Omega_{\text{rot}}}{0.026 \text{ Myr}^{-1}}\right) \left(\frac{R}{10 \text{ pc}}\right) \text{ (solar neighbourhood)}$$

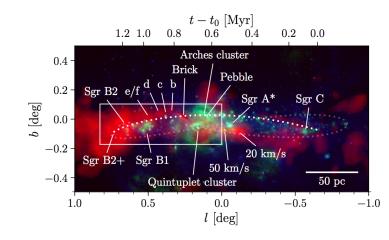
$$\rightarrow \sigma_{\text{shear}} > \sigma_{\text{virial}} \text{ if } \left(\frac{n_{\text{GMC}}}{2.2 \times 10^3 \text{ cm}^{-3}}\right)^{1/2} < \left(\frac{\Omega_{\text{rot}}}{1.7 \text{ Myr}^{-1}}\right) \text{ (CMZ)}$$

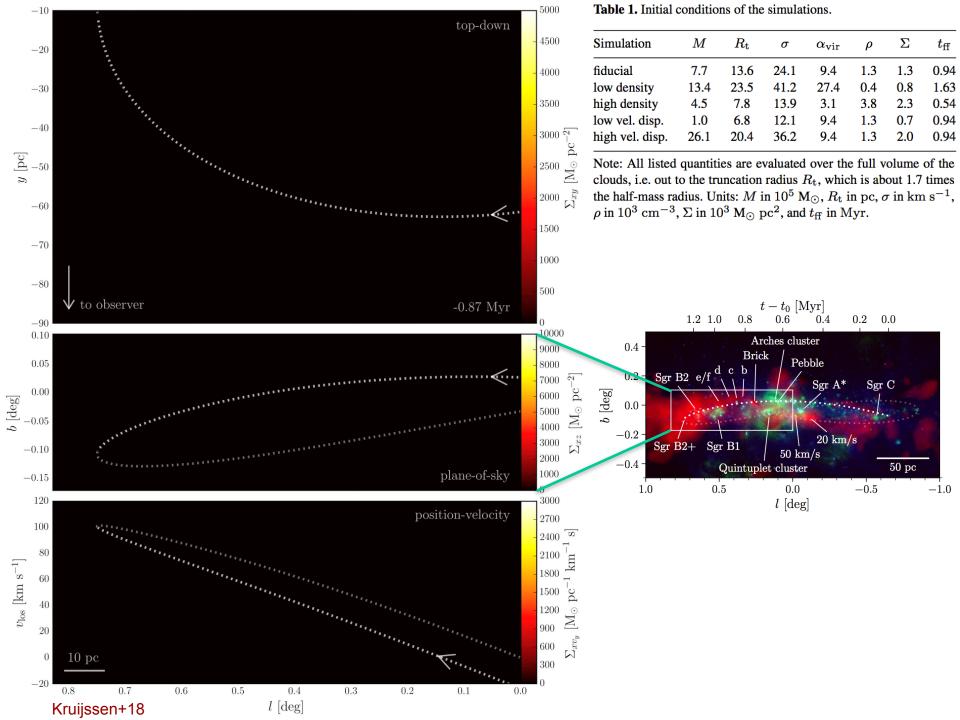
$$\left(\frac{n_{\text{GMC}}}{3.0 \text{ cm}^{-3}}\right)^{1/2} < \left(\frac{\Omega_{\text{rot}}}{0.026 \text{ Myr}^{-1}}\right) \text{ (solar neighbourhood)}$$
warm neutral medium

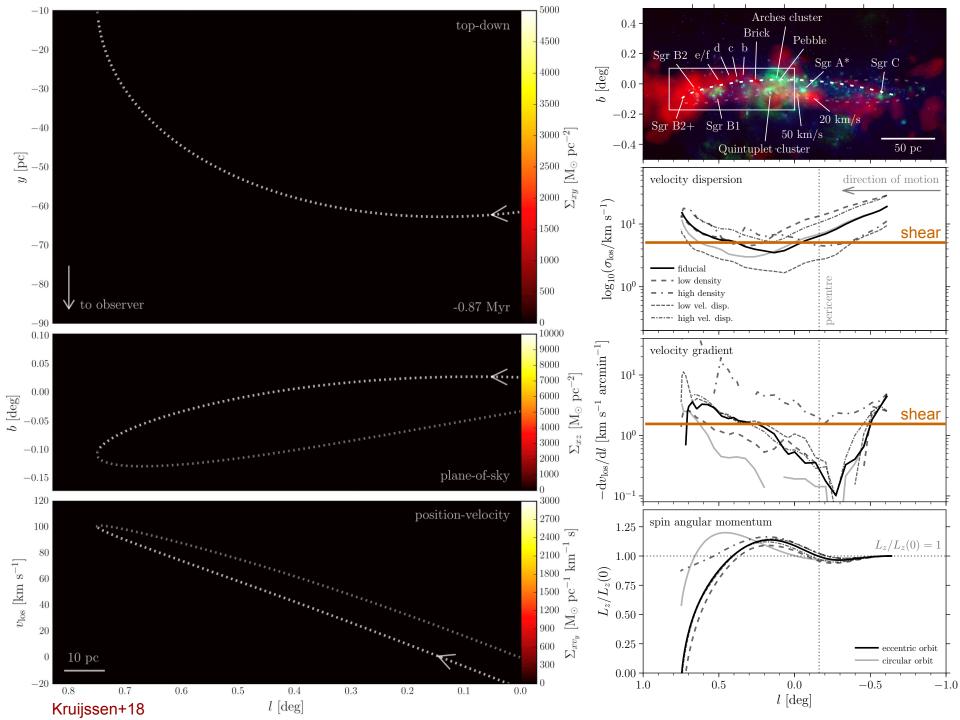
 \rightarrow

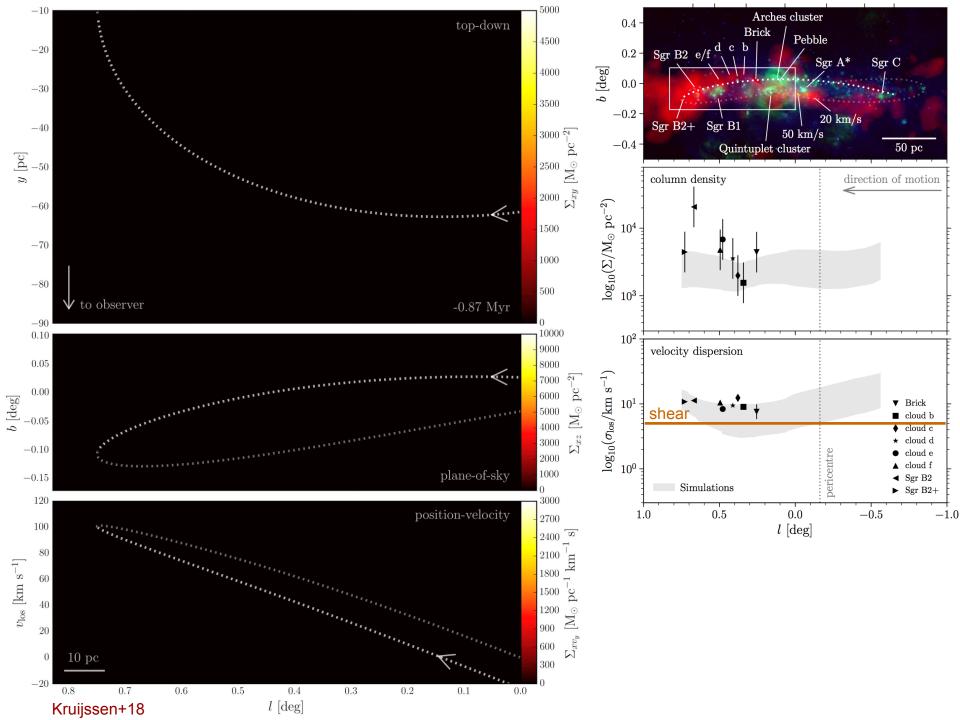
In the CMZ, galactic dynamics affect cloud evolution

$$\begin{split} \sigma_{\rm virial} &= 0.52 \,\mathrm{km \, s^{-1}} \, \left(\frac{\Sigma_{\rm GMC}}{10^2 \,\mathrm{M_{\odot} \, pc^{-2}}} \right)^{1/2} \, \left(\frac{R}{1 \, \rm pc} \right)^{1/2} & \text{Heyer+09} \\ \sigma_{\rm shear} &= 0.67 \,\mathrm{km \, s^{-1}} \, \left(\frac{\Omega_{\rm rot}}{1.7 \, \mathrm{Myr^{-1}}} \right) \, \left(\frac{R}{1 \, \rm pc} \right) \, (\mathrm{CMZ}) & \mathrm{Kruijssen+18} \\ \sigma_{\rm shear} &= 0.30 \,\mathrm{km \, s^{-1}} \, \left(\frac{\Omega_{\rm rot}}{0.026 \, \mathrm{Myr^{-1}}} \right) \, \left(\frac{R}{10 \, \mathrm{pc}} \right) \, (\mathrm{solar \, neighbourhood}) \\ \sigma_{\rm shear} > \sigma_{\rm virial} & \mathrm{if} \, \left(\frac{n_{\rm GMC}}{2.2 \times 10^3 \, \mathrm{cm^{-3}}} \right)^{1/2} < \left(\frac{\Omega_{\rm rot}}{1.7 \, \mathrm{Myr^{-1}}} \right) \, (\mathrm{CMZ}) \\ \left(\frac{n_{\rm GMC}}{3.0 \, \mathrm{cm^{-3}}} \right)^{1/2} < \left(\frac{\Omega_{\rm rot}}{0.026 \, \mathrm{Myr^{-1}}} \right) \, (\mathrm{solar \, neighbourhood}) \end{split}$$

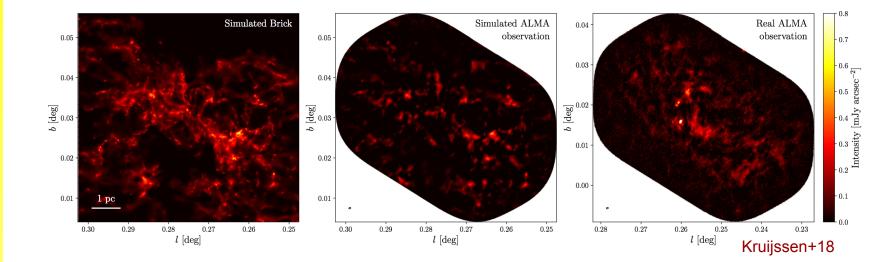

galactic dynamics affect 50 cm⁻³ cloud for R < 2 kpc (within Galactic bar!)


The dynamical evolution of molecular clouds near the Galactic Centre – II. Spatial structure and kinematics of simulated clouds


J. M. D. Kruijssen,^{1,2*} J. E. Dale,³ S. N. Longmore,⁴ D. L. Walker,^{5,6} J. D. Henshaw,²
A. Ginsburg,⁷ S. M. R. Jeffreson,¹ A. T. Barnes,^{4,8} C. D. Battersby,⁹ K. Immer,¹⁰
J. M. Jackson,¹¹ E. R. Keto,¹² N. Krieger,² E. A. C. Mills,¹³ Á. Sánchez-Monge,¹⁴
A. Schmiedeke,⁸ S. T. Suri¹⁴ and Q. Zhang¹²


The dynamical evolution of molecular clouds near the Galactic Centre – III. Tidally–induced star formation in protocluster clouds

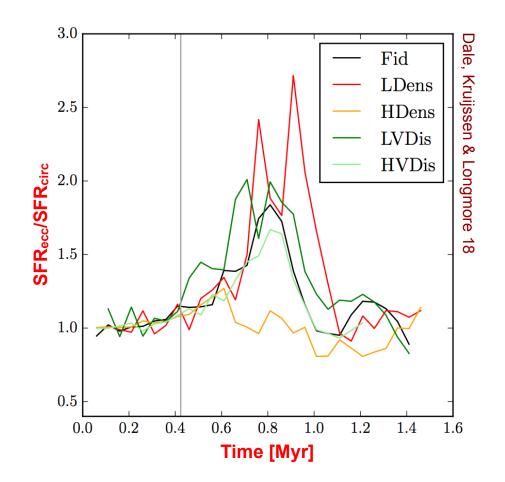
MNRAS submitted next week James E. Dale¹, J. M. Diederik Kruijssen² and S. N. Longmore³



P22

J. M. Diederik Kruijssen – Heidelberg University

Structure of simulation at position of the Brick resembles observed cloud


Peak brightness, fragmentation length, morphology similar

J. M. Diederik Kruijssen – Heidelberg University

Pericentre passage enhances SFR by factor ~2

+ Star formation rate in clouds on eccentric orbits is enhanced post-pericentre

Conclusions

- + CMZ clouds shaped by shear, tidal/geometric deformation, pericentre passage
- ◆ Shear is an important turbulence driver in the CMZ → solenoidal turbulence
- Conservation of angular momentum during gas accretion onto the cloud and gravitational collapse drives large velocity gradients
- Compressive tidal field turns clouds into spinning pancakes
- Tidal perturbation by *pericentre passage* enhances SFR by factor of 2
- + All galaxies have central tidally compressive regions driving nuclear starbursts
- Understanding variety of turbulence drivers enabled by ALMA LP of the CMZ see Jonathan Henshaw's talk on Monday