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MOTIVATION & AIM

Stars form by the gravitational collapse of dense, gaseous
and dusty cores in magnetized molecular clouds. Our aims
are:

• Modeling molecular cloud core collapse to investigate
the properties of Larson’s[1] first and second hydrostatic
cores.

• Obtaining a dependence of the first core properties on
the initial cloud mass.

• Understanding these very early stages of star formation
via detailed thermodynamical modeling in terms of radi-
ation transport[2] and phase transitions[3].

NUMERICAL SIMULATIONS
• 1D spherically symmetric radiation hydrodynamic

simulations using PLUTO[4].

• Gray (frequency independent) flux limited diffusion
approximation.

Initial setup:

• Bonnor-Ebert[5,6] like density profile

• Uniform temperature (T = 10 K)

• Cloud mass⇒ 0.5 M� - 100 M�

• Grid size⇒ 10−4 au - 3000 au
(4416 grid cells)
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CLOUD COLLAPSE: AN OVERVIEW

Cold molecular cloud (T ≈ 10 K)
⇓

Optically thin cloud collapses isothermally (γeff = 1) under its
own gravity

⇓
Optical depth ≥ 1 and core contracts adiabatically (γeff ≈ 5/3)

⇓
First collapse phase

⇓
FIRST HYDROSTATIC CORE FORMATION ( ≈ 104 years)

⇓
Core continues to contract adiabatically (γeff ≈ 7/5)

⇓
When core temperature, T ≥ 2000 K, H2 molecules begin to

dissociate and γeff ≈ 1.1
⇓

Second collapse phase
⇓

SECOND HYDROSTATIC CORE FORMATION
( ≈ 105 years)

THERMODYNAMIC PROFILE

Thermal evolution showing the first and second collapse phase for
a 1 M� cloud. The change in effective gamma γeff indicates the

importance of using a realistic gas equation of state.

CORE FORMATION
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Shown above are the radial density (left) and velocity profiles (right)
after a non-homologous cloud collapse for different initial

cloud masses (0.5 M� - 100 M�).

FIRST CORE PROPERTIES
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Dependence of the mean first core radius (left) and the first core
lifetime (right) on the initial cloud mass show a transition region in

the intermediate-mass regime (around 8 – 10 M�).

RESULTS
• The first core radius increases with initial cloud mass from the low- to intermediate-mass regime and decreases from the

intermediate- to high-mass regime.

• The first core lifetime strongly decreases towards the intermediate- and high-mass regime indicating that first cores are
almost non-existent in the high-mass regime.

• In a nutshell, low-mass protostars tend to evolve through two distinct stages of formation of the first and second hydrostatic
cores. In contrast, in the high-mass star formation regime, the collapsing clouds rapidly evolve through the first core phase
and essentially immediately form Larson’s second cores.
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