Galactic-scale star formation

Eve Ostriker *Princeton University*

Observations: *where do we stand?*

Optical: Gendler + PHAT

High revolution Andromeda

Other high-res. surveys:

- CO (1-0) (CARMA, Schruba)
- 21cm, RC (EVLA, Leroy)

IR : Herschel X-ray: XMM

UV: GALEX

Large-scale gas and SFR

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

	UI	trav	viol	et A	Atla	s of	i Ne	ar	by (Gal	axi	es	
1	-		۲		~	۲			1			۹.	
	۲	1	œ.	1		10		٠	di.	18	1		ø
ġ.	¢	Ś	.1	ø	0	6	0	1		÷.,	.*	141	•
		æ		V	۹.	۹	۲	5	S.		19		•
	۲	e		50	۲			1	1	1	*	-	
ž		۲		5	1		1		•	1			۰.
1	1	-	1	•	•		*		*	1	+.		
権	ø	۲			۲	1	6	5				1	1
3.	-	5	٢	-6		0	4	6	æ	•		14	
	۲			1	٠	1	3		*			•.	٠.
	1	1	0	\odot	1	\$	-		2	*			
	۲	1	/	1.	-	×	œ,	1	X	•		P	
5.7	aie	-	(*)	1	\$	•X.			-	1			
\$	-	M.	1	-3	-	1			1		1		-

kpcscale surveys

^{6/27/16} **PAWS**: M51 at GMC-scale resolution

Schinnerer et al (2013)⁴

EDGE+CALIFA

ARP220	IC0480	IC0540	IC0944	IC1151	IC1199	IC1683	IC2247	IC2487	IC4566	IC5376	NGC0447	NGC0477
					- 0-						••	N.
NGC0496	NGC0523	NGC0528	NGC0551	NGC1167	NGC2253	NGC2347	NGC2410	NGC2480	NGC2481	NGC2486	NGC2487	NGC2623
	-				9			-		•		
NGC2639	NGC2730	NGC2880	NGC2906	NGC2916	GNGC2918	NGC3303	NGC3381	NGC3687	NGC3811	NGC3815	NGC3994	NGC4047
100 - C	and the second						•	2-				
NGC4149	NGC4185	NGC4210	NGC4211N	NGC4470	NGC4644	NGC4676A	NGC4711	NGC4961	NGC5000	NGC5016	NGC5056	NGC5205
		Nr.										3
NGC5218	NGC5394	NGC5406	NGC5480	NGC5485	NGC5520	NGC5614	NGC5633	NGC5657	NGC5682	NGC5732	NGC5784	NGC5876
	0							9				
NGC5908	NGC5930	NGC5934	NGC5947	NGC5953	NGC5980	NGC6004	NGC6021	NGC6027	NGC6060	NGC6063	NGC6081	NGC6125
				10 .				7				-
NGC6146	NGC6155	NGC6168	NGC6186	NGC6301	NGC6310	NGC6314	NGC6361	NGC6394	NGC6478	NGC7819	UGC00809	UGC03253
UGC03539	UGC03969	UGC03973	UGC04029	UGC04132	UGC04280	UGC04461	UGC05108	UGC05111	UGC05244	UGC05359	UGC05498	UGC05598
/.		6.55			1					6 00		
UGC06312	UGC07012	UGC08107	UGC08250	UGC08267	UGC09067	UGC09476	UGC09537	UGC09542	UGC09665	UGC09759	UGC09873	UGC09892
UGC09919	UGC10043	UGC10123	UGC10205	UGC10331	UGC10380	UGC10384	UGC10710					
			P	1º	-		. Z.		ARI in 125		ED s from C	

"first order": $\Sigma_{\rm SFR}/\Sigma_{\rm H2}$ ~ const.

HERACLES

Jameson et al (2015)

• SFR linear in H₂ at moderate $\Sigma_{H2} \lesssim 100 M_{\odot} \text{ pc}^{-2}$: $\Sigma_{SFR} = \Sigma_{H2} / t_{dep,mol}$ with $t_{dep,mol} \sim 10^9 \text{ yr}$

6

Next order: variations in t_{dep,mol}

Effect enhanced by lower central X_{CO} (Sandstrom et al 2013)

Utomo + EDGE/CALIFA team (2016)

Lower $t_{dep,mol} = \frac{\sum_{mol}}{\sum_{SFR}}$ in centers of normal galaxies

High- Σ_{H2} regime: strongly nonlinear

6/27/...

Narayanan et al (2102)

 $X_{CO} = \Sigma_{UC}$ \mathbf{O}

Narayanan, Krumholz, Ostriker, & Hernquist (2012)

$$X_{CO} = 1.3 \times 10^{21} / [Z' \Sigma_{H2}^{0.5}] \qquad X_{CO} = 6.8 \times 10^{20} / [Z'^{0.65} W_{CO}^{0.32}]$$

SF in dense gas

Shallower relation at low Σ , esp. for HCN \Rightarrow relatively more efficient SF in HCN-emitting gas at low Σ

Usero et al (2015)

6/27/16

See also: Gao & Solomon (2004), Garcia-Burillo et al (2012); Wu et al (2005) ¹⁰

SF in dense gas

relatively more efficient SF in HCN-emitting gas at low Σ_{gas} and Σ_{star}

Usero et al (2015)

SF in dense gas

Bigiel et al (2016)

Similar result holds for multiple pointings within M51

6/27/16

SF vs. total gas

- Increase of Σ_{SFR} with total
 - $\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2}$:
 - Superlinear at high end:
 - $\Sigma_{gas} \approx \Sigma_{H2} \gtrsim 100 \text{ M}_{\odot} \text{ pc}^{-2}$
 - Close to linear for
 - $10M_{\odot} \text{ pc}^{-2} \lesssim \Sigma_{\text{gas}} \approx \Sigma_{\text{H2}} \lesssim 100 \text{ M}_{\odot} \text{ pc}^{-2}$ with $t_{\text{SF}'\text{H2}} = 2 \times 10^9 \text{ yr}$
- Superlinear and significant scatter at low end:
 - $\Sigma \approx \Sigma_{\rm HI} \lesssim 10 {\rm M}_{\odot} {\rm pc}^{-2}$
 - \Rightarrow parameter other than Σ_{gas} is important!

Local and global Kennicutt-Schmidt relations

SFR and H₂/HI correlations with stellar content

Leroy et al (2008)

SFR and pressure correlation

Leroy et al (2008)

6/27/16

See also Blitz & Rosolowsky (2006): $R_{mol} \propto P_{DE}$

Gas consumption efficiency

 Interpretation of mid-disk obs. with t_{SF}(H₂)= const. : "isolated" GMCs have ~uniform properties and SFE

$$\dot{M}_* = \varepsilon_{\rm GMC} \frac{M_{\rm GMC}}{t_{\rm GMC}} = \varepsilon_{\rm ff} \frac{M_{\rm GMC}}{t_{\rm ff}} \qquad \Longrightarrow \qquad \Sigma_{\rm SFR} = \varepsilon_{\rm GMC} \frac{\Sigma_{\rm mol}}{t_{\rm GMC}} = \varepsilon_{\rm ff} \frac{\Sigma_{\rm mol}}{t_{\rm ff}}$$

 $t_{\rm SF} ({\rm H}_2) = 2 \times 10^9 \text{ yr requires } \mathcal{E}_{\rm GMC} = 0.01 \text{ if } t_{\rm GMC} = 20 \text{ Myr,}$ $\mathcal{E}_{\rm ff} = 0.003 \text{ if } \langle n_{\rm H} \rangle \sim 50 \text{ cm}^{-3}$

- Starburst regime: using $t_{\rm ff}$ for all-H₂ disk in vertical equilibrium, $\Sigma_{\rm SFR} \equiv \varepsilon_{\rm ff} \frac{\Sigma}{t_{\rm ff}} = \varepsilon_{\rm ff} \frac{4G\Sigma^2}{\sqrt{3}v_z}$
 - Comparison to coefficient of $\Sigma_{\rm SFR} \propto \Sigma^2$ from observations \Rightarrow $\varepsilon_{\rm ff} = 0.001 v_z / {\rm km \ s}^{-1} \sim 0.01$ for $v_z \sim 10 \, {\rm km/s}$

Note: $t_{osc} = (\pi/G\rho_{tot})^{1/2}; t_{ff} = (3\pi/32G\rho_{gas})^{1/2} \sim t_{osc}/2; t_{ver} = H/v_z = t_{osc}/(2\pi)$

• *Star formation is inefficient at consuming gas, over timescales relevant to the ISM dynamics*

Questions for theory

- Why is SF correlated with molecular gas?
- Why is $\varepsilon_{\rm ff}$ so small and $t_{\rm dep,mol}$ so large?
- Why do inner galaxies/high- Σ_* /high *P* regions have higher efficiency/lower $t_{dep,mol}$?
- What is responsible for the scaling $\sum_{SFR} \propto \sum_{mol}^2$ in starburst regions?
- Is star formation as "inefficient" as it seems?

Questions for theory

- Why is SF correlated with molecular gas?
- Why is ε_{ff} so small and $t_{\text{dep,mol}}$ so large?
- Why do inner galaxies/high- Σ_* /high *P* regions have higher efficiency/lower $t_{dep,mol}$?
- What is responsible for the scaling $\sum_{SFR} \propto \sum_{mol}^2$ in starburst regions?
- Is star formation as "inefficient" as it seems?

SF/molecular correlation?

• Causality or coincidence?

Krumholz, Leroy, McKee (2011), Glover & Clark (2012)

- Low *T* required for small-scale collapse, but H₂ does not cool
- Molecule formation and selfgravity timescales both shorter at high *n*
- Photodissociation,
 photoheating, gravity/
 pressure all reduced at high N
- CO best coolant but C⁺, and C nearly as good

Glover & Clark (2012)

Red: no chemistry Green: H chemistry only Blue: all chemistry 19

6/27/16

Gong, Ostriker, & Wolfire (2016)

Temperature & chemistry

Questions for theory

- Why is SF correlated with molecular gas?
- Why is $\varepsilon_{\rm ff}$ so small and $t_{\rm dep,mol}$ so large?
- Why do inner galaxies/high- Σ_* /high *P* regions have higher efficiency/lower $t_{dep,mol}$?
- What is responsible for the scaling $\sum_{SFR} \propto \sum_{mol}^2$ in starburst regions?
- Is star formation as "inefficient" as it seems?

PDFs: lognormal + power-law tail

Critical density for SF

- General idea: only sufficiently dense gas, as drawn from log-normal PDF, can collapse
- Krumholz & McKee (2005): for neither thermal nor turbulent support, $L_{Jeans}(\rho_{crit}) = L_{sonic}$ for GMC

$$\rightarrow \rho_{\rm crit} / \rho_0 \sim \alpha_{\rm vir} (v/c_{\rm s})^2$$

• SFR/M ~ $\epsilon_{core} t_{ff}(\rho_0)^{-1}$ ×(mass fraction above ρ_{crit})

- Weak dependence on Mach number v/c_s
- Low efficiency for large Mach number
- Efficiency decreases for increasing $\alpha_{vir} \sim (t_{ff}/t_{dyn})^2$

Padoan & Nordlund 2011

Model similar to KM05, but

- SFR $\propto 1/t_{\rm ff}(\rho_{\rm crit}) \times (\text{fraction above } \rho_{\rm crit})$ instead of SFR $\propto 1/t_{\rm ff}(\rho_0) \times (\text{fraction above } \rho_{\rm crit})$
- \Rightarrow change ε_{ff} by factor $\propto (\rho_{crit} / \rho_0)^{1/2} \sim \alpha_{vir}^{1/2} (v/c_s)$
- $\Rightarrow \epsilon_{\rm ff}$ increases with v/c_s and decreases with $\alpha_{\rm vir}$

Padoan et al (2012)

- Simulations extend range of $\boldsymbol{\alpha}_{vir}$, magnetic field, Mach number
- Conclude that $\varepsilon_{\rm ff}$ depends primarily on $\alpha_{\rm vir} \sim \left(\frac{t_{\rm ff}}{t_{\rm dyn}}\right)^2$

Larger efficiency than original KM05 expectation: $\epsilon_{\rm ff} > 0.1$ for $\alpha_{\rm vir} < 3$

6/27/16

Padoan, Haugbølle, Nordlund (2012)

Summary: ϵ_{ff} in turbulent gas

• Simulations and models suggest that

 $\epsilon_{\rm ff} = dM/dt (M/t_{\rm ff}(\rho_0))^{-1} \text{ or } = \Sigma_{\rm SFR}/[\Sigma_{\rm H2}/t_{\rm ff}(\rho_0)]$

can be low for molecule-dominated conditions

largely because of turbulence, secondarily from *B* Krumholz & McKee 2005; Padoan et al 2011, 2012; Hennebelle & Chabrier 2011; Federrath & Klessen 2012; Hopkins 2013

- From simulations, $\epsilon_{\rm ff} \sim 0.1-0.3$ for $\alpha_{\rm vir} \sim 1-3$
- For SG galactic disk supported by turbulence, $\alpha_{\rm vir} \sim (t_{\rm ff}/t_{\rm dyn})^2 \sim 2$; would imply $\epsilon_{\rm ff} >> 0.01$
 - Discrepancy of simulations with observations may depend on details of turbulent driving
- Questions: what sets molecular fraction, v/c_s ?

Questions for theory

- Why is SF correlated with molecular gas?
- Why is ε_{ff} so small and $t_{\text{dep,mol}}$ so large?
- Why do inner galaxies/high- Σ_* /high *P* regions have higher efficiency/lower $t_{dep,mol}$?
- What is responsible for the scaling $\Sigma_{SFR} \propto \Sigma_{mol}^2$ in starburst regions?
- Is star formation as "inefficient" as it seems?

ISM energetics and feedback

- Timescales for cooling and turbulent dissipation in the diffuse ISM are short
- To maintain equilibrium, energy must be replenished
- High-mass stars efficiently:
 - heat the ISM with photoelectric effect from FUV
 - destroy parent GMCs through radiation, winds
 - drive turbulence in the ISM with expanding SN shells
- Midplane pressure ∝ energy density must support weight of diffuse ISM
 - weight depends on gravity of gas, stars, dark matter

• *ISM equilibrium demands a certain level of feedback*

Thermal and dynamical equilibrium

Ostriker, McKee, & Leroy (2010), Ostriker & Shetty (2011)

• Thermal equilibrium:

 $n\Lambda(T) = \Gamma \Rightarrow P_{th} \Lambda(T) / T \propto J_{FUV} \Rightarrow P_{th} \propto \Sigma_{SFR}$

- Turbulent equilibrium:
- $P_{turb} = v_z^2 \rho \sim v_z^2 \Sigma / H \sim v_z \Sigma / (H / v_z) \sim (momentum/area) / t_{ver}$ dissipation=driving \Rightarrow
 - $P_{turb} \sim (1/4) p_* \Sigma_{SFR} / m_* \Rightarrow P_{turb} \propto \Sigma_{SFR}$
- Vertical "hydrostatic" equilibrium:

p*/m*= radial
momentum per
mass of stars
formed

 $P_{turb} + P_{th} \approx P_{DE} = \Sigma \langle g_z \rangle / 2 \approx \Sigma (2G \ \rho_*)^{1/2} v_z + \pi G \Sigma^2 / 2$

 $\Rightarrow P_{th} + P_{turb} \propto \Sigma_{SFR} and P_{th} + P_{turb} \approx P_{DE}$

Thermal and dynamical equilibrium

Ostriker, McKee, & Leroy (2010), Ostriker & Shetty (2011)

• Thermal equilibrium:

 $n\Lambda(T) = \Gamma \Rightarrow P_{th}\Lambda(T)/T \propto J_{FUV} \Rightarrow P_{th} \propto \Sigma_{SFR}$

- Turbulent equilibrium:
- $P_{turb} = v_z^2 \rho \sim v_z^2 \Sigma / H \sim v_z \Sigma / (H / v_z) \sim (momentum/area) / t_{ver}$ dissipation=driving \Rightarrow

$$P_{turb} \sim (1/4) p_* \Sigma_{SFR} / m_* \Rightarrow P_{turb} \propto \Sigma_{SFR}$$

• Vertical "hydrostatic" equilibrium:

p*/m*= radial
momentum per
mass of stars
formed

$$P_{turb} + P_{th} \approx P_{DE} = \Sigma \langle g_z \rangle / 2 \approx \Sigma (2G \rho_*)^{1/2} v_z + \pi G \Sigma^2 / 2$$

$$\Rightarrow \sum_{SFR} \propto P_{DE} \approx \Sigma (2G \rho_*)^{1/2} v_z + \pi G \Sigma^2 / 2$$

Momentum Injection by SNe

- Key feedback parameter is the net momentum injection/mass p_*/m_*
- SNR classical evolution stages :
 - Free expansion, Sedov-Taylor, Pressure-Driven Snowplow, Momentum-Conserving Snowplow

Spherical simulations: Cioffi et al 1988, Blondin et al 1998, Thornton et al 1998

• New simulations: **3D**; **inhomogenous medium**

Kim & Ostriker (2015), Iffrig & Hennebelle (2015), Martizzi et al (2015), Walch & Naab (2015)

- All find p_* similar to value in homogeneous medium
- Insensitive to mean ambient density: $p_{final} = 3 \times 10^5 M_{\odot} km/s \langle n_0 \rangle^{-0.17}$

Kim & Ostriker (2015)

Simulations with self-consistent SN feedback and radiative heating

- Kim, Kim, & Ostriker (2011); Kim, Ostriker, & Kim (2013); Kim & Ostriker (2015b)
 - include turbulent driving from SN (momentum injection)
 - include dependence of heating rate on star formation rate
 - Include vertical gravity of stellar disk

Global galaxy simulations with feedback

- Without feedback, SFR much higher than observed
- With feedback, comparable to observations

Semenov, Kravtsov, & Gnedin (2016)

Hopkins, Quataert, & Murray (2011

Questions for theory

- Why is SF correlated with molecular gas?
- Why is ε_{ff} so small and $t_{\text{dep,mol}}$ so large?
- Why do inner galaxies/high- Σ_* /high *P* regions have higher efficiency/lower $t_{dep,mol}$?
- What is responsible for the scaling $\sum_{SFR} \propto \sum_{mol}^2$ in starburst regions?
- Is star formation as "inefficient" as it seems?

No!

$\Sigma_{\rm SFR}$ vs. equilibrium pressure

6/27/16

What next?

- Time-dependent MHD+chemistry (& shielding) to follow creation/evolution/destruction of molecular clouds, relation to star forming clouds
- Critical assessment of X_{CO}, other molecular tracers in varying galactic environments
- Quantify impact of feedback effects (protostellar jets/ outflows, ionizing & non-ionizing radiation and winds from OB stars, individual and correlated SNe) at varying scales in ISM, cloud evolution stages
- Measure dependence of SFE on MC properties (size, mass) and environment
- Connect galactic-scale SF to galactic-scale winds to understand cosmic-scale SF evolution

Summary

- *Resolved* galactic observations + multiwavelength coverage have quantified & clarified:
 - Variation of SF timescales in different galactic regimes/ environments
 - Dependence of SFR on parameters other than molecular (CO) content
- Consideration of *ISM/SF lifecycle* in theory & simulations has:
 - turned focus to role of *feedback and SF self-regulation*
 - led to *quantitative agreement* with large-scale SF observations
- *Next steps*: moving to integrate cloud-scale with larger-scale picture (dynamics + chemistry)