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Clouds with broad column density distributions are more active

Star Formation and Environment:

Kainulainen+ 2009 



Lada et al. 2010

Clouds with more dense (high extinction) material form more stars

dense gas

Star Formation and Environment:



Heiderman et al. 2010

Clouds with more dense (high extinction) material form more stars

Star Formation and Environment:



Aims

Compare star formation and environment in the clumps of one cloud

Image credit: B. Caton, A. Howard, E. Zbinden, R. B. Andreo

Perseus molecular cloud



Clumps in the Perseus Cloud

Clumps:  moderately dense subregions of clouds

Perseus image credit: G. Bachmayer

Molecular Cloud: ~ 10 pc, ~ 104-5 Mʘ



Molecular Clump:
~1 pc, ~102-3 Mʘ

NGC1333 image credit: T.A. Rector, H. 
Schweiker, NOAO, AURA, NSF

Clumps in the Perseus Cloud
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Cloud “Environment”

Environment characterized by GBS Herschel data: 160 – 500 µm
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Cloud “Environment”

Environment characterized by GBS Herschel data: 160 – 500 µm 

Greybody fitting at 36″ resolution → T, N(H2)



Perseus Column Density Distribution



Column density

5.0 X 1021 cm-2 (A V ~ 7 mag)
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Defining the Perseus Clumps



s = slope 

Sadavoy et al. 2014

Clump Column Density Distributions



s = slope 

Sadavoy et al. 2014

Clump Column Density Distributions



s = slope 

Sadavoy et al. 2014

Clump Column Density Distributions



s = slope 

Sadavoy et al. 2014

Clump Column Density Distributions



s = slope 

Sadavoy et al. 2014

Clump Column Density Distributions

starless



Clump “Environment”

for N(H2) > 1022 cm-2

Clump
 
       s
      M (Mʘ)     A (pc2)    Star Formation    
L1448
      -1.4 ± 0.3
      118
       0.21
 
     

NGC1333     -1.8 ± 0.2
       365
       0.73
 
  

B1
 
      -2.2 ± 0.2
      342
       0.84
 
   

IC348
      -2.5 ± 0.2
      156
       0.44
 
   

B5
 
      -2.8 ± 0.7
       28
       0.09
 
   

L1455
      -2.9 ± 0.2
      101
       0.31
 
   

B1-E

      -9.6 ± 1.0
        5
       0.02
 
   

Perseus
    -2.07 ± 0.03    1171
        2.8
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?



Image credit: Andrea Isella

Characterizing Star Formation
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Characterizing Star Formation



Characterizing Class 0 Protostars

Class 0 protostars are difficult to observe

~ need infrared-to-millimeter data

~ protostellar signatures can be faint 

~ source inclination can affect classification

Image credit: M. V. Persson



Characterizing Class 0 Protostars

Class 0 protostars are difficult to observe

~ need infrared-to-millimeter data

~ protostellar signatures can be faint 

~ source inclination can affect classification

Maury et al. 2011

Herschel + Spitzer YSOs + SCUBA 850 µm

Observational criteria (70 μm, Tbol, Lsmm/Lbol)

Evolutionary criteria (accretion models)

Image credit: M. V. Persson



Characterizing Class 0 Protostars

Class 0 protostars are difficult to observe

~ need infrared-to-millimeter data

~ protostellar signatures can be faint 

~ source inclination can affect classification

Herschel + Spitzer YSOs + SCUBA 850 µm

Observational criteria (70 μm, Tbol, Lsmm/Lbol)

Evolutionary criteria (accretion models)

➔ 28 Class 0 protostars

Image credit: M. V. Persson

Maury et al. 2011



Star Formation and Environment

Clump
 
       s
      M (Mʘ)     A (pc2)     N(Class 0)
L1448
      -1.4 ± 0.3
      118
       0.21
 
     4

NGC1333     -1.8 ± 0.2
       365
       0.73
 
    12

B1
 
      -2.2 ± 0.2
      342
       0.84
 
     6

IC348
      -2.5 ± 0.2
      156
       0.44
 
     5

B5
 
      -2.8 ± 0.7
       28
       0.09
 
     0

L1455
      -2.9 ± 0.2
      101
       0.31
 
     1

B1-E

      -9.6 ± 1.0
        5
       0.02
 
     0

Perseus
    -2.07 ± 0.03    1171
        2.8
 
    28



Class 0 Surface Density

Number
   Area

power-law index at high column densities 



Class 0 Surface Density
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power-law index at high column densities 

average



Class 0 Star Formation Efficiency (SFE)

Sadavoy et al. 2014
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Later-Stage YSOs
Class I

Class II Class III

Flat
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Implications

☆ Class 0 protostars are uniquely connected to high density material
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Implications

☆ Class 0 protostars are uniquely connected to high density material

☆ Clump power-law tails correspond to most recent star formation 

Evidence for feedback? 

☆ As clump population ages, power-law slope steepens



1) YSO Feedback Disrupts Clumps



1) YSO Feedback Disrupts Clumps

Fallscheer et al. 2013 NGC 7538 in CO (3-2)

2 pc

 cavity
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1) YSO Feedback Disrupts Clumps

Fallscheer et al. 2013 NGC 7538 in CO (3-2)

2 pc

 cavity

 2 pc

 cavity  cavity

 cavity cavity cavity

Though, feedback less significant for low-mass regions

e.g.,  Hatchell et al. (2007), Curtis et al. (2010), Arce et 
al. (2010), Plunkett et al. (2013)



2) Class 0 Feedback Enhances Tails



2) Class 0 Feedback Enhances Tails

Arce 2011 (online notes)

Image credit: J. Morse/STScI/NASA/ESA



Kritsuk et al. 2011

log-normal distribution 

distribution 
at time t 

We need to test the impact of YSO feedback

Implications: Simulations
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