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1 Introduction
Turbulence is ubiquitous in molecular clouds (Elmegreen & Scalo

2004, Hennebelle & Falgarone 2012) and is believed to play a key
role in regulating star formation (Mac Low & Klessen 2004, McKee &
Ostriker 2007, Krumholz 2014). For several decades supersonic tur-
bulence was used essentially as a wild card in star formation studies
due to the lack of a simple conceptual theory that would capture the
key physics and predict scaling of turbulent fluctuations. However,
the situation is quickly evolving now due to progress in theory (Aluie
2013), new exact scaling relations derived from the Navier-Stokes
(N-S) equations (e.g. Galtier & Banerjee 2011) and large-scale nu-
merical experiments (Kritsuk, et al. 2013a,b; Federrath 2013).

Here we present a summary of results of a study confronting the
new theory with numerical experiments and observational measure-
ments (see Kritsuk, et al. 2013a,b for more detail).

2 New exact relation
We start with a brief outline of the derivation, highlighting the

key conceptual elements, and then continue by evaluating individual
terms in the new relation using data from a Mach 6 simulation of
isothermal turbulence carried out with the PPM of Colella & Wood-
ward (1984).

Consider the N-S equations for an isothermal compressible fluid

∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρuu) + ∇p = η∆u +
η

3
∇(∇ · u) + f ,

where p = c2sρ is the pressure, η > 0 viscosity, and f(x, t)
is a large-scale random force. Total energy density is one of ideal

integral invariants of the system: E ≡
〈

ρu2/2 + ρe
〉

, where

e = c2s ln(ρ/ρ0) is the specific compressive "potential" energy.
The following energy balance equation describes competition be-

tween large scale energy injection and small-scale dissipation

∂tE = 〈ǫ〉 − η
〈

ω
2
+ 4d

2
/3

〉

,

were ǫ = u · f is the local energy injection rate, ω = ∇ × u

vorticity, d = ∇ · u dilatation, and 〈. . .〉 an ensemble average. In
a statistical steady state in the limit of small viscosity η (Re → ∞),
the pumping and dissipation rates are finite and compensate each
other exactly.
The following scaling relation (which additionally assumes isotropy)

Q(r) + F‖(r) = − 4
3
εr,

describes how the energy propagates in a fluid from large to small
scales through the inertial range. Here the longitudinal energy flux
F‖, source Q and pumping rate ε are defined as

F‖(r) =
〈

[δ(ρu) · δu + 2δρδe] δu‖ + δ̃eδ(ρu‖)
〉

,

Q(r) ≡
1

r2

∫

r

0
S(r)r

2
dr,

S(r) =
〈[

δ(dρu) − δ̃dδ(ρu)
]

· δu +

2
[

δ(dρ) − δ̃dδρ
]

δe + δdδp − 2dp
〉

,

ε = 〈ρu
′
· a + ρ

′
u

′
· a〉/2

(Galtier & Banerjee 2011; Kritsuk, et al. 2013a).

FIGURE 1: Projected gas density in a Mach 6 turbulence simulation at 20483 .

FIGURE 2: A density slice from the same simulation as Fig. 1. Most of the sharp
structures seen are shock waves. Note how shocks are clustered around density
peaks.

We used high resolution data from Kritsuk, et al. (2007) to ver-
ify the relation and access relative importance of different terms.
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FIGURE 3: The new relation holds reasonably well and describes a direct en-
ergy cascade with an effective sink due to compressibility. Both flux F‖(r)

and source Q(r) scale approximately linearly with r and have opposite signs,
|F‖|/Q ≈ 3.2. Origin of linear scaling of the source still remains unexplained.
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FIGURE 4: The flux F‖(r) can be reasonably well represented by the first (domi-

nant) term F‖(r). Contributions from terms that contain increments of compres-

sive energy δe can be safely ignored in high Mach number turbulence.
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FIGURE 5: The source S(r) can be well approximated by the first term S(r).
The remaining terms dependent on the increment of compressive energy δe or
pressure p are subdominant in high Mach number turbulence.

3 Scaling in supersonic turbulence
As the comparative analysis of relative contributions of different

terms in the full exact relation shows, at high Mach numbers, the
scaling relation can be substantially simplified. Let’s define

F‖(r) =
〈

[δ(ρu) · δu] δu‖

〉

,

S(r) =
〈[

δ(dρu) − δ̃dδ(ρu)
]

· δu
〉

,

ε(r) ≈ 〈ρu · a〉 = ε0.

Then, ignoring all subdominant terms representing fluctuations of
pressure p and compressive energy e, we obtain

Q(r) +
〈

[δ(ρu) · δu]δu‖

〉

= −
4

3
Cε0r,

where an order unity constant C ≈ 0.87 at Mach 6.
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FIGURE 6: The dominant constituents in the energy flux and source terms demon-
strate linear scaling over at least one decade in separationr. Note that the ordinate
scale is linear.

Since Q(r) ∝ r, it can be included in ǫeff , leading to a compact
form

〈

[δ(ρu) · δu]δu‖

〉

= − 4
3
εeff r,

which should be compared with a primitive version of the 4/5 law of
Kolmogorov (1941) for incompressible turbulence

〈

(δu)
2
δu‖

〉

= −
4

3
ε̄r,

where ε̄ = ε0/ρ0. This new scaling relation has a remarkable and
unique property to asymptotically converge to the 4/5 law at Mach
numbers M ≪ 1 and also capture correct asymptotic behavior at
M ≫ 1. Moreover, it allows one to derive observed Larson’s (1981)
relations from first principles, supporting their interpretation in terms
of supersonic turbulence (Kritsuk, et al. 2013b).

4 Conclusions
New Kolmogorov-like scaling relation for compressible isothermal

turbulence is verified numerically at Mach 6. Our results support a
direct energy cascade picture in three-dimensions developed earlier
based on dimensional arguments (Kritsuk, et al. 2007). Both incom-
pressible and highly supersonic limits permit major simplifications in
the analytical treatment, while transonic regime is the most complex.
Linear inertial range scaling of the compressible kinetic energy flux

with separation
〈

[δ(ρu) · δu]δu‖

〉

∝ r appears to be universal

and is expected to hold at arbitrary Mach numbers.
Equipartition of energy between dilatational and solenoidal modes

is expected in fully developed turbulence (Kraichnan 1955). In sim-
ulations with strongly nonequilibrium pumping (e.g. purely compres-
sive), the universal scaling should still be seen at small separations
far away from the energy injection scale, but yet above the dissipation
scale, if the grid resolution is sufficiently high (cf. Federrath 2013).
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