The Mass and Size of Clouds and Cores

Jens Kauffmann

NASA Jet Propulsion Laboratory California Institute of Technology NASA NPP Fellow

NASA Jet Propulsion Laboratory Pasadena, CA

Early Phases of Star Formation Ringberg, Germany, 2010 June 14

Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

Jens Kauffmann (NASA JPL)

Mass and Size

Nested Structure

or

Cloud Structure Studies

massive star formation (MSF)

Paresce et al.

formation of MSF dense cores:

- overall density?
- cloud hierarchy?
- \Rightarrow MSF criteria

low-mass star formation

Martial Figenwald

 $\begin{array}{l} \text{MSF criteria} \\ \Rightarrow \text{ assess SF from large distances} \\ \Rightarrow \text{ constrain galactic SF budget} \end{array}$

Mass-Size Diagram as a Diagnostic Tool

COMPLETE survey of star-forming regions, lead by Alyssa Goodman

with help from:

- Rahul Shetty
- Phil Myers
- Jaime Pineda
- Jonathan Foster

Erik Rosolowsky: dendrogram code

Thushara Pillai: Co-I and data

- 2 Example Clouds
- 3 Massive Star Formation
- IRDCs & Low Mass Star Formation

- Example Clouds
- 3 Massive Star Formation
- 4 IRDCs & Low Mass Star Formation
- 5 Summary and Outlook

References

Rosolowsky et al. (2008)

Kauffmann et al. (2010a), paper I

Getting Mass-Size Data

Method

Basic Properties

generally:

$$m(r) = 71 \ M_{\odot} \left(\frac{\langle N_{\rm H_2} \rangle}{10^{21} \ {\rm cm}^{-2}} \right) \left(\frac{r}{\rm pc} \right)^2$$

for spheres:

$$m(r) = 28 M_{\odot} \left(\frac{\langle n_{\rm H_2} \rangle}{100 \text{ cm}^{-3}} \right) \left(\frac{r}{\rm pc} \right)^3$$
$$\varrho(s) \propto s^{-k} \Leftrightarrow m(r) \propto r^{3-k}$$

for singular cores: $m(r) = 2.6 M_{\odot} \left(\frac{T_{\text{gas}}}{\text{K}}\right) \left(\frac{r}{\text{pc}}\right)$

A similar Diagram

- 2 Example Clouds
- 3 Massive Star Formation
- 4 IRDCs & Low Mass Star Formation
- 5 Summary and Outlook

References

Kauffmann et al. (2010b), paper II

Large and Small Scales

Pipe Nebula

insignificant cluster is offset from cloud main body

Ophiuchus Molecular Cloud

dominating cluster is embedded in cloud main body

Hubs in Star-Forming Regions?

hubs in clouds

quantitative definition via cloud hierarchy?

Without Massive Star Formation

- 2 Example Clouds
- 3 Massive Star Formation
- 4 IRDCs & Low Mass Star Formation
- 5 Summary and Outlook

References

Kauffmann et al. (2010c), paper III

Massive Star Formation

Clouds with and without Massive Star Formation

 $m(r) \sim 870 \, M_{\odot} \, (r/{
m pc})^{1.33}$ is a good MSF threshold

Massive Star Formation

A Diagnostic Diagram

MSF vs. low mass SF:

- absolute differences?
- relative differences?

Massive Star Formation

Larson's Mass-Size Law

slope does not hold

- Getting Mass-Size Data
- 2 Example Clouds
- 3 Massive Star Formation
- 4 IRDCs & Low Mass Star Formation
- 5 Summary and Outlook

References Kauffmann et al. (2010c), paper III

IRDCs in Context

Compactness

$$m(r)/m_{
m lim}(r)
ightarrow {
m compactness}$$

 $m_{
m lim}(r) = 870 \ M_{\odot} \ (r/
m pc)^{1.33}$

IRDCs & Low Mass Star Formation

Typical IRDC Conditions

Distance kpc	Number –	Fraction %	Mass Fraction %
2	831	7	71
4	2218	20	87
6	3639	32	93
8	4778	42	96

250 clouds contain 50% of total $\int \textit{N}_{\text{H}_2} \; \mathrm{d}\Omega$

compact IRDCs:

Galactic Star Formation Environments

LaBoCa, Bolocam, Scuba-II, Herschel

- \Rightarrow survey galaxy
- \Rightarrow galactic SF budget

- Getting Mass-Size Data
- 2 Example Clouds
- 3 Massive Star Formation
- 4 IRDCs & Low Mass Star Formation
- 5 Summary and Outlook

Recap

Main Thoughts

origin of MSF dense cores

 \Rightarrow density, hierarchy?

can be analyzed in mass-size space, considering slopes and intercepts

yields diagnostic diagram

Recap

Main Thoughts

origin of MSF dense cores

 \Rightarrow density, hierarchy?

can be analyzed in mass-size space, considering slopes and intercepts

yields diagnostic diagram

Infrared Dark Clouds

by number: non-MSF regions (\geq 50%)

by mass: MSF regions (\geq 70%)

if present data characteristic...

Larson's Law

```
typical m(r) slope \sim 1.3
```

```
\Rightarrow Larson's m \propto r^2 law does not hold
```

Clusters

manifest in cloud hierarchy

Unfinished Business

homogenize & expand data:

clusters: draw into mass-size diagrams?

other diagrams: unification of m(r) with mass functions and N_{H_2} PDFs seems possible

Nested Structure: Future Challenges

Summary and Outlook

