Lecture 9: "Dust physics and surface chemistry"

"Sure it's beautiful, but I can't help thinking about all that interstellar dust out there."

Outline

I. Physics of cosmic dust:

- Basic properties
- Interaction with light
- Formation and destruction

2. Chemical processes on dust surfaces:

- Accretion
- Surface reactions
- Desorption

I. Cosmic Dust

What is dust?

- Microscopic "dust" particles: size ~ 0.5 3 nm (5 30 Å)
- Polycyclic Aromatic Hydrocarbons (PAHs) made of benzene rings
- Macroscopic dust particles: size ~ 3 nm 1 mm
- e[−] mean free path << size</p>
- Mainly silicates, amorphous carbon, ices

PAHs & dust grains images

PAHs

Interplanetary Dust Particles (IDPs)

Schuler et al. (2015), Brownlee (2016)

How to see cosmic dust with naked eyes

• Sporadic meteors and meteor showers

Interaction with light: basics

- Extinction = Absorption + Scattering: $Q_{ext} = Q_{abs} + Q_{sca}$
- Cross-section for grain of radius "a": $C_{\text{ext}} = \pi a^2 Q_{\text{ext}}$
- Size parameter for a wavelength " λ ":
- Complex refractive index: m = n ik
- Single-scattering albedo: $\omega = Q_{\rm sca}/Q_{\rm ext}$
- Mie theory for a homogeneous sphere (G. Mie, 1908)

$$x = \frac{2\pi a}{\lambda}$$

Q-factors for a spherical particle

- Rayleigh limit: $|mx| \rightarrow 0$
- Scattering: $Q_{sca} \propto \lambda^{-4}$
- Absorption: $Q_{abs} \propto \lambda^{-1}$
- \bullet Geometric optics: $x \to \infty$
- Extinction: $Q_{ext} = 2$

- Intermediate case:
- Q-factors as infinite series
 of Bessel & Hankel
 functions

Mie (1908), Tielens (2007)

Dust in the Milky Way: extinction

- Noticed by W. Herschel & F. von Struve (~1850)
- Sub-micron-sized dust particles (silicates and carbonaceous)
- First dust extinction measurements by Trumpler (1930)

First dust extinction measurements Trumpler (1930):

- Open stellar clusters (>100 stars in a tight group)
- -Absolute magnitude "M" = apparent magnitude "m" at 10 pc
- $-M = m 5(\log_{10}(r) I) \Rightarrow distance r [pc] if M and m are known$
- Linear diameter D and the measured angular diameter d: D = d x r
- Strange result: D increases with increasing distance r

Trumpler: 0.70 mag/kpc

Modern value: 1.8 mag/kpc

Interstellar reddening

 $I_{\lambda} = I_{\lambda}^{0} \exp(-A_{\lambda})$

Dust at different wavelengths: B68

• Absorption is effective for $x = \frac{2\pi a}{\lambda} \ge I \Rightarrow$ grain size $\le 0.1 - 0.5 \mu m$

Dust in the Milky Way: emission

Sub-millimeter (λ = 0.85mm / 353 GHz)

Infrared spectroscopy of dust

•Ground-based telescopes (many): limited by

atmosphere => observations at $\sim I-3 \ \mu m$

•Space-borne facilities (a few):

ISO: 2 – 200 μm

SOFIA: 60 – 200 μm

Spitzer: $5 - 40 \ \mu m$

Herschel: $40 - 260 \ \mu m$

James Webb Space Telescope: $0.6 - 28 \ \mu m$

Laboratory spectra for identification

IR spectroscopy: solid-state bands

- Water ice (O-H stretching): $3\mu m$
- PAHs (C-H & C-C stretching and bending): 3.3, 6.2, 7.7, 8.6, 11.3µm, ...
- Hydrogenated amorphous carbon: 3.4, 6.8, 7.2 μ m, ...
- Amorphous silicates (Si-O stretching, O-Si-O bending): 9.8, 18µm
- Crystalline silicates (lattice): 10.2, 11.4, 16.5, 19.8, 23.8, 27.9, 33.7, 69μm

Solid-state IR absorption bands: cold dust

Silicate emission at 10µm: warm dust

Composition, plus some info on temperature, size

Bouwman et al. 2001

• Dust around young stars is old, and dust around old stars is young!

Dust production in AGB stars

Source	Dust mass loss rate, M _{Sun} /yr	Dust composition
Carbon-rich, 2 – 4 M _{Sun}	~10-9 - 10-7	Amorphous carbon, PAHs, SiC
Oxygen-rich, 4 – 8 M _{Sun}	~10 ⁻⁹ — 10 ⁻⁶	Amorphous & crystalline silicates, oxides

Ejecta of AGB stars

The Eskimo Nebula, Hubble Space Telescope, WFPC2

Observed dust around AGBs

Herschel images of IR PACS 160 5.0E-4 0.0025 0.0045	C + 10216 SPIRE 250 0.0010 0.0015 0.002	SPIRE 350	Ladjal et al. (2010)
WRR 140	JXVST		

Dust formation in supernovae: Supernova 1987A

Dust production in supernovae

Source	Dust mass per explosion, M _{Sun}	Dust composition
Supernovae	<10 ⁻⁴ — 0.1	Amorphous carbon and silicates, iron
Supernovae remnants, <400 yr old	~I0 ⁻³ — 0.I	Amorphous carbon and silicates

Cosmic dust formation

- Stellar ejecta:
 - Winds: giant and AGB stars (~40%)
 - Explosions: novae and supernovae (~60%)
- Composition determines mineralogy:
 - O-rich ejecta: silicates, oxides
 - C-rich ejecta: graphite and soot
 - SN: Fe, Ni, Co,...
- Grains gain ~ 50% in mass in the ISM
- Ice forms on grains at <20–100K

Cosmic dust destruction

- Erosion by FUV photons with E > 5-6 eV
- Grain-grain collisions (>10 m/s)
- Shocks in turbulent ISM:
 - $V \sim 50$ km s⁻¹: grain-grain collisions (1% efficiency)
 - $V > 200 \text{ km s}^{-1}$: gas-grain collisions (50% efficiency)

Survival timescale ~ 5 10⁸ yrs < Injection timescale ~ 3 10⁹ yrs!

Cosmic dust: overview

- Dust/gas by mass: ~ 1%
- Sink of heavy elements (> Na)
- Typical radius is $0.1 \, \mu m$
- Opaqueness of matter (opacities)
- Heating & cooling
- Catalytic surfaces for reactions

II. Chemical Processes on Dust Surfaces

Dust grains as catalysts for chemistry

- Carbonaceous/silicates
- Size distribution (usually a single size
 - in chemical models)
- Fluffy, porous structure (usually assumed spherical and compact)
- Molecules stick to dust surface:
 - ~10⁶ binding sites on 1000Å grain
 - a binding site has a size ~IÅ
 - ~100–300 monolayers of ice

dust particle from space

dust particle in the models

Chemistry in space: surface processes

II. Diffusion via hopping or tunneling

III. Surface recombination: H_2 , H_2O , organics,...

IV. Desorption or destruction (UV, X-ray, CR,...)

Two sorts of binding sites for accretion

Chemisorption

- Chemical bonds
- Binding energies: ~ 0.5–5 eV or >20,000 K

Physisorption

- Weak electrostatic van der Waals force
- Binding energies: ~10–100 meV or ~100–5,000 K

Accretion and freeze-out rates

- Accretion rate: $k_{ac} = n_d \sigma_d v S(T, T_d) \simeq 10^{-17} \left(\frac{T}{10 \text{ K}}\right)^{1/2} n \text{ s}^{-1}$ n_d is dust density, σ_d is dust cross section, v is thermal velocity,
 - $n_{\rm d}$ is dust density, $\sigma_{\rm d}$ is dust cross section, v is thermal velocity, S is sticking coefficient (~1)
- Freeze-out timescale: $t_{\rm freeze} \sim 1/k_{\rm ac} \approx 3 \times 10^9/n_{\rm H}$ years • Arrival timescale: $\tau_{\rm ar} = (n_i \sigma_{\rm d} v)^{-1} \simeq 3 \left[\frac{10^4 \,{\rm cm}^{-3}}{n} \right] \left[\frac{1000 \,{\rm \AA}}{a} \right]^2$ days,

Radius a = 1000Å, dust/gas = 0.01, T = 10 K, n_H = 10⁴ cm⁻³:

 $n_{\rm d} \sim 10^{-12} n$, $\sigma_{\rm d} \sim 3 \times 10^{-10} \text{ cm}^2$, $v(H) \sim 300 \text{ m/s}$

- Accretion rate: 10⁻¹³ s⁻¹
- Freeze-out timescale: 3x10⁵ years
- Arrival timescale: 3 days

Major ices in the ISM

'Typical' abundances (H_2O ice = 100%)

СО	few-50%
CO ₂	15-35%
CH ₄	2-4%
CH ₃ OH	<8, 30%
НСООН	3-8%
[NH ₃]	<10, 40% (?)
H ₂ CO	<2,7%
[HCOO-]	0.3%
OCS	<0.05, 0.2%
[SO ₂]	<=3%
[NH ₄ +]	3-12%
[OCN-]	<0.2, 7%

Oberg et al. (2012)

Mechanisms of surface recombination

- Langmuir-Hinshelwood: recombination after hopping/tunneling
- Eley-Rideal: direct "stick-and-hit" recombination
- Hot-atom: combination of both
- Excess of energy is absorbed by dust lattice

Surface synthesis of water

Tielens & Hagen 1982

• All reaction steps were studied in laboratory

Surface hydrogenation of CO

• CO is converted to complex organic molecules

Surface chemistry: an overview

- Most of reactions were studied in laboratory
- Diffusivity of H: fast already at 10 K
- Diffusivity of O, C, N is slow at 10 K => hydrogenation prevails
- Polyatomic "CHON" molecules: synthesis requires energy (UV, CRP, e-)

Cuppen et al. (2016)

Surface chemistry rates & timescales

Cold molecular cloud:

a = 1000Å, dust/gas = 0.01, T = 10 K, $n_{\rm H}$ = 10⁴ cm⁻³, $E_{\rm diff}$ = 0.3 $E_{\rm des}$

• Arrival time: t_{ar} ~ 3 days

• Hopping timescale (~ 1/k_h): H₂ (E_{des} = 440K): $t_h \sim 5 \times 10^{-7} s$ C (E_{des} = 800K): $t_h \sim 0.03 s$ O (E_{des} = 1660K): $t_h \sim 4 \times 10^9 s$ or 135 years H₂O (E_{des} = 5600K): $t_h \sim infinity$

Desorption of ices: summary

- Thermal desorption at specific T ("snowline"):
 - ${\sim}16-19~K$ for N_2
 - ~20 K for CO, CH_4
 - ${\sim}35-40$ K for CO_2
 - ${\sim}55-60$ K for NH_3
 - $\sim 100 150 \text{ K}$ for H₂O, CH₃OH, ...
- Photodesorption: regions which FUV photons can reach
- CRP desorption: occurs in dense regions (low probability)
- Chemical desorption: can occur after surface reaction

(variable probability)

From ices to gas: dense cores \Rightarrow hot cores

- Ices are synthesized and sublimated when T increases
- More complex molecules become detectable
- High-resolution laboratory spectra

Suggested literature

• B. Draine, "Astrophysics of Dust in Cold Clouds" (2003): <u>https://</u>

arxiv.org/abs/astro-ph/0304488

- A. G.G.M. Tielens, "Molecular Universe" (2021), CUP
- H. Cuppen et al., "Grain Surface Models and Data for Astrochemistry"

(2017), Space Sci. Rev. 212/1-2

• A. Potapov & M. McCoustra, "Physics and Chemistry on the Surface of

Cosmic Dust Grains: A Laboratory View" (2021): <u>https://arxiv.org/pdf/</u>

2105.01387.pdf

Merry Christmas and Happy New Year!

