Lecture 10: Dust and Surface Experiments

The term "dust grain" is understood here to extend down to molecules containing tens of atoms, as there is no discontinuity in the physics as the particle size decreases from microns to Angstroms.

B.T. Draine, "Interstellar Dust Grains", Annu. Rev. Astron. Astrophys. 2003, 41:241-89

Recap: first evidence for interstellar dust Trumpler tries to determine distance of open clusters

"Unless we are willing to admit that the dimension of open clusters depend on their distance from the sun, we are led to the conclusion that the inverse square law on which the photometric distances are based does not hold and that a general absorption is taking place within our stellar system."

Recap: The First "Dark Matter"

Early observations showed "Holes in the sky"

"The space absorption of light is thus immediately related to the question of the presence, distributions, and constitution of **dark matter in the universe.**"

R.J. Trumpler, PASP 1930

- Interstellar voids?
- absorption of light in space by "ether"?

214 PUBLICATIONS OF THE

ABSORPTION OF LIGHT IN THE GALACTIC SYSTEM

BY ROBERT J. TRUMPLER

For more than a century astronomers have interested themselves in the question: Is interstellar space perfectly transparent, or does light suffer an appreciable modification or loss of intensity when passing through the enormous spaces which separate us from the more remote celestial objects? Any effect of this kind is generally referred to as "absorption of light in space," whatever the peculiar physical process assumed for its

How to see cosmic dust with naked eyes?

- Meteor showers
- 2017: August 12-13 (Perseids), November 17/18 (Leonids)

Outline: Challenges for Laboratory Astrophysics

- 1. Can we collect cosmic dust (since it seems to rain down on us)?
- 2. Can we simulate dust formation in the laboratory?
- 3. Can we understand its optical properties to make use of astron. data?
- 4. Can we test the formation of molecules (chemistry) on dust grains?

Can we simply collect cosmic dust?

Dust collecting pool with magnetic filtering.

Source: wikipedia

But: human contamination from engines and power plants almost everywhere today (Feinstaub)

More professional: NASA's Cosmic Dust Program: Collecting Dust Since 1981

Figure 1 - Two round, large-area cosmic dust collectors deployed beneath the wing of a NASA ER-2 aircraft in flight.

http://elementsmagazine.org/2016/06/16/nasas-cosmic-dust-program-collecting-dust-since-1981/

♠ > Science

Cosmic dust left over from the dawn of the solar system found on rooftops in Paris

By Sarah Knapton, SCIENCE EDITOR

6 DECEMBER 2016 • 4:46PM

iny specks of cosmic dust which are left over from the formation of our solar system have been discovered on the rooftops of three European cities.

The space debris, which is falling constantly through the atmosphere, has previously only been found in Antarctica and the deep ocean.

It was thought that it would never be found in cities because it would be so difficult to detect it amid the pollution, dust and grime in urban areas.

Amateur astronomer Jon Larsen

What is cosmic dust probably made of? Check Elemental Abundances of non-volatiles

Terms from mineralogy

Dust Collectors (courtesy V. Sterken, ETH Zurich, former MPI-K Dust group)

Introduction

Ballistic rockets in Kiruna (Sweden)

HEOS-2 @ Earth (apo 38 R_E)

HELIOS @ Sun-Earth (apo 0.3 AU, peri 0.88 AU)

Rosetta mission to comet Landing in 2014

J.Kissel with Stardust CI<u>DA</u>

Galileo @ Jupiter (5 AU)

Giotto encounter with comet Halley 1986

Ulysses - around the Sun, out of the ecliptic plane! @ 1.3-5.4 AU (almost Jupiter)

Trajectory sensor for future missions: JUICE, SARIM+, DUNE,...

Cassini @ Saturn (10 AU)

Interstellar Dust moves fast

• The LIC: H, He and dust

 Dust comes from 259° Longitude, 8° latitude (Ecliptic frame), V_{rel} = 26 km/s

Mainly silicates and carbons

What we're aiming for:

- Dust size distribution & abundances
- Chemical composition

Astronomical observations
 Spacecraft in-situ measurements
 From dust dynamics (comparing simulations to data)

Horsehead Nebula - 1500 ly Credits: Hubble Space Telescope

How to make dust move fast in the laboratory: The Heidelberg Dust Accelerator (1960-2016)

M. Stuebig et al., Planetary and Space Science 49, 853 (2001)

Testing & Calibration with the dust accelerator

Impacts on foils, aerogel, dust instruments, ... Calibration of dust instruments Using different dust "analogues"

Aeroge Mystifying Blue Smoke

At first glance aerogel resembles a hologram. It's deceiving whether it's really there or not. A highly porous solid material, aerogel has the lowest density of any solid known to man. One thousand times less dense than glass, aerogel has earned the nickname, "solid blue smoke."

> The crayons on top of the aerogel are protected from the flame underneath, and are not melting.

> > Capability

Aerogel will be used on the STARDUST spacecraft to capture comet particles from Comet Wild 2. Aerogel is strong and easily survives launch and space environments. It has been used for the Mars Pathfinder and other rover missions.

Support

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Mixed with silicon dioxide and a solvent, aerogel is 99.8% air, and is 1,000 times less dense than glass. Particles traveling six times faster than a rifle bullet can be stopped by a block of aerogel. Aerogel can withstand high temperatures. Some types of aerogel provide 39 times more insulation than fiberglass.

High

Temperature

Despite weighing only 3 milligrams per cubic centimeter, aerogel can support up to 4,000 times its own weight.

Stardust (NASA mission)

- Launch: 1999 (Delta II rocket, Florida)
- 2 ISD capture periods in 2000 & 2002
- Aerogel collector (2 sides)
- 2006: Earth return

Stardust

Mission trajectory

Return capsule

http://stardust.jpl.nasa.gov/home/index.html

Stardust

Impact speeds and directions of interstellar grains on the Stardust dust collector

Veerle J. Sterken³⁵, Andrew J. Westphal¹, Nicolas Altobelli⁴⁰, Eberhard Grün¹⁸, Frank Postberg²⁹, Ralf Srama³⁴, Carlton Allen², David Anderson¹, Asna Ansari³, Sasa Bajt⁴, Ron S. Bastien², Nabil Bassim⁵, H. A. Bechtel⁶, Janet Borg⁷, Frank E. Brenker⁸, John Bridges⁹, Donald E. Brownlee¹⁰, Mark Burchell¹¹, Manfred Burghammer¹², Anna L. Butterworth¹, Hitesh Changela¹³, Peter Cloetens¹⁴, Andrew M. Davis¹⁴, Ryan Doll¹⁵, Christine Floss¹⁹, George Flynn¹⁶, Patrick Fougeray¹⁷, David Frank², Zack Gainsforth¹, Philipp R. Heck¹⁹, Jon K. Hillier²⁵, Peter Hoppe²⁰, Bruce Hudson²¹, Gary Huss²², Joachim Huth²⁸, Brit Hvide⁴, Anton Kearsley²³, Ashley J. King²⁴, Barry Lai²⁵, Jan Leitner²⁸, Laurence Lemelle²⁶, Hugues Leroux²⁷, Ariel Leonard¹⁹, Robert Lettieri¹, William Marchant¹, Larry R. Nittler²⁸, Ryan Ogliore³⁰, Wei Ja Ong¹⁹, Mark C. Price¹³, S. A. Sandford³⁰, Juan-Angel Sans Tresseras¹⁴,

Sylvia Schmitz³¹, Tom Schoonjans³², Geert Silv Sol e¹⁴, Thomas Stephan¹⁸, Julien Stodolna¹, I Trieloff⁴⁵, Peter Toor³⁷, Akira Tsuchiyama³⁸, Vincze⁵⁰, Joshua Von Korff¹, Naoni Wordswo >30,000 Star- dust@home dusters⁴¹

HELP

11

CLASSROOM

0.5 mm

An interactive Internet-based search for interstellar dust in the Stardust aerogel collector

GET STARTED

ABOUT

Get Started

for stardust

NEWS

Step 1 Read Finding Stardust

Step 2 Take Tutorial session

Step 3 Take Test & Register

Step 4 Login and start searching

Welcome to Stardust@home, Phase V.

COMMUNITY

Beginning in 2006, NASA's Stardust@home citizen science project allows anyone with Internet access to help in the search for the first samples of solid matter from outside the solar system.

To learn more, including how to participate, please click on the <u>Apout</u> tab above or on any of the links below under "More Information." Then join the search by following the <u>Get Started</u> steps found to the left of this page; or after registering, read the latest Stardust@home news in our biog below.

As we move into this next Phase of the project, we want all volunteer "dusters," both past and present, to know how deeply indebted we are for all their hard work. We recently finished up an especially active round of

Stardust@home: You can become a "duster" too!

Stardust Results

Westphal et al, (≈31000 co-authors) Science 345, 786 (2014)

Table 1. Summary of interstellar candidates.

RESEARCH ARTICLE

INTERSTELLAR DUST

Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft

ID	Mass or diameter	Composition	Structure	(km s ⁻¹)
l1043,1,30,0,0 ("Orion")	3.1 ± 0.4 pg	Forsteritic olivine core (Mg ₂ SiO ₄ , 19 mol %), + nanocrystalline spinel + amorphous (MgAl ₂ O ₄ , 27 mol %) + Fe-bearing phase (47 mol %) with 7 mol % minor elements Cr, Mn, Ni, and Ca.	Low density (0.7 g cm ⁻³)	<<10
11047,1,34,0,0 ("Hylabrook")	4.0 ± 0.7 pg	Forsteritic (Fo _{>80}) olivine core (Mg ₂ SiO ₄ 30 mol %) surrounded by a low-density halo including amorphous Mg-silicate (1 mol %) + Al-, Cr-, Mn- (15 mol %), + Fe-bearing (54 mol %) phases.	Low density (<0.4 g cm ⁻³)	<<10
11003,1,40,0,0 ("Sorok")	~3 pg	Possible Si + C		> 15
I1044N,3	0.28-µm crater	Mg, Fe-rich silicate (Mg+Fe)/Si = 3.3	Single particle with chemical zoning	>10
11061N.3	0.37-µm crater	Silicate (Mg:Fe:Si = 0.58:0.22:1 atomic %) + FeS δ^{17} O = -13 ± 30‰, δ^{18} O = 11 ± 13‰, 18 O/ 17 O = 5.36 ± 0.18 (1 σ errors)	Single particle or nanoscale aggregate	~ 5 to 10
11061N,4	0.39-µm crater	Silicate (Mg:Fe:Si = 0.33:0.15:1 atomic%) + Fe, Ni metal and sulfide	Two-particle aggregate with zoning of metal and sulfide	~ 5 to 10
11061N,5	0.46-µm crater	Silicate (Mg:Fe:Si 0.57:0.15:1 atomic %) + Fe metal and Fe. Ni sulfide $\delta^{17}O = -85 \pm 61\%$, $\delta^{18}O = -20 \pm 27\%$, ${}^{18}O/{}^{17}O = 5.61 \pm 0.36$ (1 σ errors)	Nanoparticle aggregate	e ~ 5 to 10

7 interstellar candidates in micrometer range found! (Less than expected)

Cassini Huygens Mission to Saturn and its moons

The Cassini Cosmic Dust Analyzer

Srama et al., Space Science Reviews 114: 465 (2004)

Cassini-Huygens probe launched in 1997, reached Jupiter in 2004, End of mission in 2017

Salt Water Geysers on Enceladus (one of Saturn's moons)

Enceladus is believed to be covered in a solid ice surface

Evaporation plume

Credit : Cassini Imaging Team, SSI, JPL, ESA, NASA

Underground Salt Water Ocean on Enceladus

Comet: Icy solar system body "dirty snowball"

Landing on a comet: The Rosetta mission

https://blogs.esa.int/rosetta/2014/10/17/nami ng-rosetta-an-interview-with-eberhard-grun/

Where does Earth's water come from?

Deuterium Fractionation and the Origin of Terrestrial Water

Altwegg et al. Science **347**, 6220 (2015)

Outline: Challenges for Laboratory Astrophysics

- Can we collect cosmic dust (since it seems to rain down on us)?
 Yes! But to identify interstellar dust is very hard (7 particles so far).
- 2. Can we simulate dust formation in the laboratory?
- 3. Can we understand it's optical properties to make use of astron. data?
- 4. Can we test the formation of molecules (chemistry) on dust grains?

Where does the dust come from? Formed in the ISM? Estimate Grain Growth Rate in the ISM I

Average velocity of gas phase molecules with mass m_x:

$$v_{rms} = \left(\frac{3k T_{gas}}{2m_x}\right)^{1/2}$$

Collision rate with dust particle of cross section σ:

$$R = n_x \sigma \left(\frac{3k T_{gas}}{2m_x}\right)^{1/2}$$

Full, normalized Maxwell-Boltzmann Distribution:

$$f(v)dv = \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m_x}{kT_{gas}}\right)^{3/2} v^2 \exp\left(\frac{-m_x v^2}{2kT_{gas}}\right) dv$$

Collision rate integrated over all velocities, assuming geometric cross section πa^2 :

$$R = \pi a^2 n_x \int_0^\infty v f(v) dv$$

Estimate Grain Growth Rate II

Solving the integral yields:

$$R = 4\pi a^2 n_x \left(\frac{k T_{gas}}{2 \pi m_x}\right)^{1/2}$$

Mass change per time: (introducing sticking probabilty S)

$$\frac{dm_{grain}}{dt} = 4\pi \ a^2 n_x m_x \ S \left(\frac{k \ T_{gas}}{2 \ \pi \ m_x}\right)^{1/2}$$

General Ansatz, mass linear to volume: (introducing density ρ)

$$\frac{dm_{grain}}{dt} = \frac{d}{da} \left(\frac{4}{3} \pi a^3 \rho\right) \frac{da}{dt}$$

$$\frac{dm_{grain}}{dt} = 4 \pi a^2 \rho \frac{da}{dt}$$

$$\frac{da}{dt} = \frac{n_x S}{\rho} \left(\frac{kT_{gas} m_x}{2\pi}\right)^{1/2}$$

Can be integrated, assuming all parameters are independent of t

Estimate Grain Growth Rate III

Radial growth with time:
$$a(t) = a_0 + \frac{n_x S}{\rho} \left(\frac{kT_{gas} m_x}{2\pi}\right)^{1/2} t$$

Solve for time t(a):

$$t(a) \sim \frac{a\rho}{n_x S} \left(\frac{2\pi}{k T_{gas} m_x}\right)^{1/2}$$

Diffuse interstellar medium:

- T = 50 K,
- Typical grain size: 0.1 μm
- assume mass of condensable Molecules: m_x = 50 m_H
- assume grain density ρ= 2.2 g cm⁻³
- $n_x = 1x10^{-5} n_H = 1x10^{-5} x 100 cm^{-3}$

 $t \sim \frac{2 x \, 10^9}{S}$ years

Comparable to the age of the Universe!

Dust must form in regions of higher density, under conditions favorable for <u>Condensation</u>

• T goes down outward \Rightarrow at T < 3000 K condensation begins

The beautiful end of the Sun

The Cat's Eye nebula

The Ring nebula

• Extended shells of gas + freshly condensed solids

Can we simulate dust formation in the laboratory?

Formation pathways for solid carbon

Terrestrial:

- most experimental data on the kinetics on soot formation were obtained in flames and shock waves
- there is a rough understanding of the processes of dust formation.
- Fullerenes versus PAHs

Polycyclic Aromatic Hydrocarbons (PAHs) and Fullerenes

Simple aromatic molecule: C_6H_6

Fullerenes are molecules consisting of carbon atoms that are connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ellipsoid, tube or many other shapes and sizes.

Gas-phase condensation by Laser Pyrolysis

Cornelia Jäger MPIA / Friedrich Schiller Universität Jena

High-temperature condensation: Laser pyrolysis or laser ablation with a pulsed laser (T \ge 3500 K); Fullerene-like carbon grains

Low-temperature condensation: Laserpyrolysis with cw-laser (T ≤ 1700 K) soot and PAHs

Low-temperature condensation process T ≤ 1700 K

Characterisation of the low-temperature condensates

High-temperature condensation T ≥ 3500 K

Fullerene-like carbon seeds & fullerenes

Gas-phase condensation of silicate particles

Iaser ablation of Mg/Fe/Si, Mg/Si, Fe/Si mixed targets (olivine and pyroxene stoichiometry) and of an olivine crystal

beam extraction, deposition on CaF2 substr.

High-temperature gas-phase condensation of silicates or carbon from the

laboratory

Particulate silicate (for example MgFeSiO₄ olivine) or carbon layer of definite thickness

Condensation temperature for carbononaceous particles \geq 4000K

The cosmic dust aggregation experiment CODAG

An encapsuled dust aggregation experiment onboard a space shuttle

To rule out the influence of gravity -> go to low-gravity environment

J. Blum et al., Meas. Sci. Technol. 10 (1999) 836-844.

The cosmic dust aggregation experiment CODAG

Dust injection device

Rapid growth of surprisingly open structures

J. Blum et al., Phys Rev. Lett. 85, 2426 (2000)

Interstellar Dust: Soot and Sand

Fig. 5. A 10-µm interplanetary dust particle known as a Brownlee particle. Collected in the stratosphere, it is composed of glass, carbon, and mineral silicates. Acknowledgment is made to NASA for allowing reproduction of this picture from web site http://stardust.jpl.nasa.gov/science/sci2.html.

Dust grains are produced in the **outflows of Stars and stellar envelopes**

- Carbon-rich stars produce carbonaceous grains (soot)
- Oxygen-rich stars make
 metalic oxides and silicates

Nature of Interstellar Dust:

- Ranges in size from 1nm to 10µm
- Many more small grains than large
- The larger grains are likely to be nonspherical, perhaps porous, fluffy, even fractal
- Composition is likely to contain metallic silicates, carbonaceous material, and GEMS (glasses with embedded metal and sulfites)
- Mantles of ices (H₂O, CO, CO₂, CH₃OH) are found in dense regions

Outline: Challenges for Laboratory Astrophysics

- Can we collect cosmic dust (since it seems to rain down on us)?
 Yes! But to identify interstellar dust is very hard (7 particles so far).
- Can we simulate dust formation in the laboratory?
 Yes! One can condensate carbonaceous as well as silicate particles. But there is a lot of potential for complexity.
- 3. Can we understand it's optical properties to make use of astron. data?
- 4. Can we test the formation of molecules (chemistry) on dust grains?

3. Can we understand the optical properties of dust? Interstellar Extinction Curve

- Grain absorption and scattering processes at a certain wavelength λ are correlated with the size of the particle
- Rise towards the UV means that there are a lot more small particles

- The shape of the curve is well-represented by a 7-parameter fit (Cardelli 1989):

$$\frac{A_{\lambda}}{A_{V}} = f(\lambda, R_{\nu}, C_{1}, C_{2}, C_{3}, C_{4}, \lambda_{0}, \gamma)$$

• It is possible to estimate all parameters, if R_v is known.

3. Can we understand the optical properties of dust?

The 220 nm Bump and the Discovery of the Buckminsterfullerene C₆₀

The next slides courtesy of Prof. Wolfgang Krätschmer (MPIK)

Experiment: how to condense carbonaceous material

The discovery of C₆₀

Harry Kroto had been studying the formation of interstellar carbon chains since 1970

Theory: an obscure form of carbon

映二

Eiji Osawa

W Krätschmer et al. (MPI Kernphysik, Heidelberg) developed a method to synthesize C₆₀ in macroscopic quantities

100 µm

International Weekly Journal of Science

UNDERSTANDING ANTARCTIC

The cellular defect behind cystic fibrosis .

W.Krätschmer et al. Chem. Phys. Lett. 170, No.2,3 p.167 (1990)

Molecular Hype

The discovery of buckyballs C₆₀

(Named after architect Buckminster Fuller)

Today at the "Deutsche Museum" (Bonn)

Fulleren-Generator

Diese Apparatur dient der köstengünstigen Herstellung von Fulleren G60, einem fußballförmigen Molekill aus 60 Kohlenstoffatomen.

Im Inneren der Glasglocke verdampfen Graphitstäbe in einer Heliumatmosphäre zu heißem Kohlenstoffdampf, der anschließend durch das Edelgas Helium geköhlt wird. Der Dampf kondensiert dabei zu kleinsten Staubteilchen, die sich als Ruß an den Wänden der Apparatur absetzen. Der Ruß enthält neben anderen Fullerenen bis zu 15 % C60-Moleküle, die leicht zu isolieren sind.

In Fulleren-Molekülen sind Kohlenstoffatome in Fünf- und Sechsecken angeordnet und bilden zusammen eine Kugel. Dieser Aufbau gibt Fullerenen besondere Eigenschaften. Bisher waren nur zwei Kohlenstoffanordnungen bekannt: Kohlenstoffatome, die sich wie im Graphit als Schichtgitter oder wie im Diamant als Raumgitter aneinanderlagem.

Rephris in Montali Nach der Supplymmerne dei Antellanen Rober Barbitune Tahrend de unser Fahrend Mahluffe Fahren imparte

Mehr Informationen -> www.deutscher-miseum-bonn.de

Epilogue: C₆₀ and space and the 220nm bump

REPORTS

Detection of C₆₀ and C₇₀ in a Young Planetary Nebula

Jan Cami,^{1,2,} Jeronimo Bernard-Salas,^{1,4} Els Peeters,^{1,2} Sarah Elizabeth Malek¹

Cami et al., Science 329, 1190 (2010)

Thermal emission models

Fullerene Production in Interstellar Space (Theory)

Berne and Tielens, "Formation of buckminsterfullerene (C₆₀) in interstellar space", PNAS 2011

High-temperature gas-phase condensation of silicates or carbon from the

laboratory

Particulate silicate (for example MgFeSiO₄ olivine) or carbon layer of definite thickness

Condensation temperature for carbononaceous particles \geq 4000K

Spectrocopy of cosmic dust analogues in the laboratory

Herschel telescope / PACS

69 μm emission band of forsterite shows the existence of warm (~100–200 K), iron-poor grains in disks.

Sturm et al. 2013, A&A 553, A5

Data Bases

CDMS AND **HJPDOC**

MOLECULAR/DUST SPECTROSCOPY CATALOGUES

S. SCHLEMMER, C. P. ENDRES, H. S. P. MÜLLER, P. SCHILKE, J. STUTZKI I. Physikalisches Institut, Universität zu Köln

C. JÄGER, H. MUTSCHKE, TH. HENNING, V.B. II'IN, D. SEMENOV MPIA Heidelberg, AIU Jena, AI St. Petersburg State Univ.

XML Schema for Atoms, Molecules, and Solids

Outline: Challenges for Laboratory Astrophysics

- Can we collect cosmic dust (since it seems to rain down on us)?
 Yes! But to identify interstellar dust is very hard (7 particles so far).
- Can we simulate dust formation in the laboratory?
 Yes! One can condensate carbonaceous as well as silicate particles.
 But there is a lot of potential for complexity.
- 3. Can we understand it's optical properties to make use of astron. data? Yes! But it's a lot of work, the phase space is huge! There is a lot that remains to be done.
- 4. Can we test the formation of molecules (chemistry) on dust grains?

4. Can we test the formation of molecules (chemistry) on dust grains? Even more features: Ices

Generic Ice Experiments Processing of ice by radiation

J.M. Greenberg, Surface Science 500, 793 (2002)

Ice processing experiment

J.M. Greenberg, Surface Science 500, 793 (2002)

Sackler Laboratory: Leiden

E. Van Dishoeck / Lecture notes

Atom Addition Reactions in interstellar Ice Analogues

Harold Linnartz, Intern. Rev. Phys. Chem. 34, 205-237 (2015)

Harold Linnartz Leiden University

H₂ formation on grains

E. Van Dishoeck / Lecture notes

Gas grain processes: diffuse and direct

E. Van Dishoeck / Lecture notes

Ro-vibrational excitation in HD formation detected by Resonantly Enhanced Multiphoton Ionization (REMPI)

HD Formation and Ro-vibrational excitation

Energy released in the formation may contribute to the non-thermal H₂ distribution observed in diffuse clouds

Outline: Challenges for Laboratory Astrophysics

- Can we collect cosmic dust (since it seems to rain down on us)?
 Yes! But to identify interstellar dust is very hard (7 particles so far).
- Can we simulate dust formation in the laboratory?
 Yes! One can condensate carbonaceous as well as silicate particles.
 But there is a lot of potential for complexity.
- 3. Can we understand it's optical properties to make use of astron. data? Yes! But it's a lot of work, the phase space is huge! There is a lot that remains to be done.
- 4. Can we test the formation of molecules (chemistry) on dust grains? Yes! And a very rich chemistry is found.

Literature

J. M. Greenberg:	"Cosmic dust and our origins" Surface Science 500, 793-822 (2002)
B.T. Draine:	"Interstellar Dust Grains" Annu. Rev. Astron. Astrophys. 2003. 41:241-89
D.A. Williams E. Herbst	"It's a dusty Universe: surface science in space" Surface Science 500, 823-837 (2002)