Molecular Astrophysics: Exercise 5

1)

Assume that the rate of a 3-body reaction between a molecular ion XY⁺ and two H2 molecules

$$XY^{+} + H_2 + H_2 -> XYH_2^{+} + H_2$$
,

is given by

$$R = k_3 n(H_2)^2$$
.

Where k_3 is the three-body rate coefficient $k_3=1.5 \times 10^{-29} \text{ cm}^6 \text{ s}^{-1}$, and the H₂ density is given by n(H₂).

Calculate the reaction rate R for an H₂ pressure of 1 bar (at room temperature, make sure to use consistent units for the ideal gas equation) and for interstellar cloud conditions with $n(H_2) = 1000 \text{ cm}^{-3}$. What do we learn from the result? Do we need to consider three-body processes in the Interstellar Medium?

2)

The classical Langevin collision rate coefficient between an ion and a neutral collision partner is given by

$$R_L = 2.34 \ x \ 10^{-9} \ \left(\frac{\alpha}{\mu}\right)^{1/2}$$

where α is the polarizability (in $10^{-24}\,\text{cm}^3)$ of the neutral, and μ is the reduced mass

$$\mu = \frac{m_1 m_2}{m_1 + m_2}.$$

The polarizability of H₂ molecules is $\alpha = 4.29 \times 10^{-25}$ cm³, and the polarizability of H atoms is $\alpha = 6.66 \times 10^{-25}$ cm³.

Calculate the Langevin rate coefficient R_L for collisions of

a) H_2^+ with H,

- b) H_2^+ with $H_{2,}$
- c) CO^+ with H,
- d) CO^+ with H_2 .

How does the Rate coefficient vary with mass? Consider collisions of heavier molecular ions with hydrogen atoms and molecules. What range of values do you expect for the classical Langevin rate coefficient?