"Molecular Astrophysics: from Lab to Theory to Observations" 2012

Welcome!

- PhD and MSc students from ITA
- ... from Max Planck Institute for Astronomy (MPIA)
- ... from Max Planck Institute of Nuclear Physics (MPIfK)
- ... from Astronomisches Rechen-Institut (ARI)
- ... from HD Uni
- others!

• Lectures will be accessible as PDFs online

Teachers

• Dmitry Semenov, Max Planck Institute for Astronomy (MPIA): theoretical and observational astrochemistry & astrophysics

http://www.mpia-hd.mpg.de/homes/semenov/

• Holger Kreckel, Max Planck Institute of Nuclear Physics (MPIfK): laboratory astrochemistry & physics

http://www.hkreckel.de/

Organization

• Lectures:

- Monday, 11:00-13:00 (10 min break?)
- April 16 till July 23
- 15–20 min for discussion of home work

• Exam:

- Final oral exam: Dima, Holger + 1 or 2 professors

• Prerequisites:

- 80% attendance
- home work
- general understanding + simple equations

Outline of the course (13 lectures)

- Molecules in space
- Molecular properties and spectroscopy
- Different ways to detect molecules
- The first 20 minutes of the Universe
- Gas-phase molecular processes and the first molecules
- Laboratory astrophysics: gas-phase experiments
- Basics of star formation and stellar nucleosynthesis
- Dust evolution and surface processes
- Laboratory astrophysics: surface and dust experiments
- Physics and chemistry of the diffuse interstellar medium
- Physics and chemistry of the dense interstellar medium
- Physics and chemistry of protoplanetary disks
- Planetary atmospheres, exoplanets, water, and life

Background reading

- Relevant reviews for each lecture
- S. Kwok, "Physics and Chemistry of the Interstellar Medium" (2006)
- A. G.G.M. Tielens, "The Physics and Chemistry of the ISM" (2007)
- Master course in Astrochemistry, Ewine van Dischoek (2011) <u>http://www.strw.leidenuniv.nl/~sanjose/astrochem</u>
- E. Herbst & E. van Dishoeck, "Complex Organic Interstellar Molecules" (2009), Annual Rev. in Astron. & Astrophys., 47, 427
- "Protostars & Planets V" (2007), Part VI, eds. B. Reipurt et al., Univ. Arizona P.
- T. Wilson et al., "Tools of Radioastronomy" (2009), Springer

Astronomical units

- | pc = parsec = 206,265 AU = 3.086 x 10¹⁸ cm
- $M_{sun} = solar mass = 1.99 \times 10^{33} g$
- I L_{sun} = solar luminosity = 3.90 x 10³³ erg s⁻¹
- $I = I.602 \times 10^{-12} erg$
- | Å = 10⁻⁸ cm
- I Jansky = 10^{-23} erg s⁻¹ cm⁻² Hz⁻¹
- I Debye = 10^{-18} esu cm
- | Kcal/mol = 6.947 x 10⁻¹⁴ erg atom⁻¹
- | year = $3.1536 \times 10^7 s$
- Proton mass = $1.6726 \times 10^{-24} g$
- Boltzmann's constant = 1.3807 x 10⁻¹⁶ erg K⁻¹
- Planck's constant = 6.6261 x 10^{-27} erg s
- see Tielens' book!

Lecture I: Molecules in space

What is "molecular astrophysics"?

- Eddington: "Atoms are physics but molecules are chemistry"
- Molecular astrophysics (or astrochemistry) is the study of formation and destruction of molecules in the Universe, their interaction with radiation, and their feedback on physics of the environments"
- Interdisciplinary field: chemistry + physics + astronomy (+biology?)
- Observations (UV-millimeter), theoretical (astro)physics and chemistry, and laboratory astrochemistry

Detecting molecules

- Absorption: UV, optical, IR
- Emission: (sub-)millimeter
- Gas-phase & ices

Molecules are everywhere!

- Molecules are found everywhere in the Universe:
 - Appeared in the Early Universe, ~ few min after Big Bang
 - High-z quasars and galaxies
 - Milky Way: interstellar and circumstellar medium
 - Solar system: solar photosphere, planetary atmospheres, comets,

meteorites

Importance of molecules

- Unique probes of physical conditions:
 - T_{kin}, density
 - Ionization
- Unique probes of kinematics
- Chemical composition and evolution
- Coolants of gas

Detecting molecules

- Molecular lines: (far-)UV-millimeter wavelengths
- Rotational, vibrational, electronic transitions (and their combination)
- Atmosphere transparency windows at IR: blocked by OH, H₂O, etc.

Physical conditions in various astrophysical objects

- Diffuse clouds: $T_{kin} \sim 100 \text{ K}$, n $\sim 100 \text{ cm}^{-3}$
- Dense clouds: $T_{kin} \sim 10 100$ K, n $\sim 10^4 10^8$ cm⁻³
- Hot cores: $T_{kin} \sim 100 1000$ K, n $\sim 10^{6} 10^{8}$ cm⁻³
- Protoplanetary disks: $T_{kin} \sim 10 1000$ K, $n \sim 10^4 10^{13}$ cm⁻³
- Circumstellar shells of evolved stars: T_{kin} ~300–3,000 K, $n{<}10^{14}~cm^{-3}$
- More: HII regions, photo-dissociation regions, supernova remnants, ...
- Earth atmosphere at sea level: T_{kin} ~300 K, n~3 10¹⁹ cm⁻³

Typical timescales

- Collision time: ~1 month at 10 K and 10^4 cm⁻³
- Chemical time: >10⁴–10⁵ years (molecular clouds)
- Life-time of a cloud: $\sim I I0 \times I0^6$ years
- Low-mass star formation: ~10⁶ years

Chemistry is slow yet there are many molecules in the interstellar medium!

Molecularly-rich environments

- Titan, 10 AU
- Taurus molecular complex (TMC): low-mass, 140 pc
- Orion molecular cloud: high-mass, ~450 pc
- AB Aur protoplanetary disk, ~140 pc
- IRC +10216 (CW Leo), evolved C-rich star, ~120–150 pc
- Sagittarius B2: a ring of molecular clouds, Galactic center, ~8.2 kpc
- Andromeda Galaxy (M31), nearest spiral galaxy, ~1 Mpc
- J 1148+5251, quasar at z=6.4 (~6.9 Gpc)

Titan

• Near-IR, NACO at the Very Large Telescope (VLT)

Taurus Molecular Cloud

• Optical + near-IR, Digitized Sky Survey (DSS) 2

Orion Molecular Cloud

• Optical, Hubble Space Telescope

Protoplanetary disk around AB Aur

• Near-IR, HiCIAO, Subaru

CW Leo (IRC +10216)

• 50-210 mum (FIR), PACS and SPIRE, Herschel

Sagittarius B2

ATLASGAL, submillimeter (red) + Midcourse Space Experiment (MSX), IR (green and blue)

Andromeda Galaxy (M31)

FIR, Spire, Herschel

| | | 48+525 |

Sloan Discovery Image

J1148+5251: Coeval formation of a super massive black hole and giant elliptical galaxy within 870Myr of the Big Bang

Pause

History of molecules in space

INTERSTELLAR & CIRCUMSTELLAR MOLECULES (May 2006)

M. Guelin, Nobel Symposium, June 2006

History of molecules in space

- Diffuse Interstellar Bands (DIBs), optical:
 - Discovered by Heger (1922) and Merill (1934):
 - Remains unidentified till 2012 (polyaromatic hydrocarbons?)
- Sharp absorption bands (optical):
 - CH: Swings & Rosenfeld (1937)
 - CN: McKellar (1940)
 - CH⁺: Douglas & Herzberg (1941)

• First theory by Bates and Spitzer (1951), Herbst & Klemperer (1973)

Diffuse Interstellar Bands

- >400 (UV-near IR), very sharp, <1 nm
- Strengths of DIBs do no correlate
- Present consensus:
 - large gas-phase molecules (PAHs?)
 - likely carbon-based
 - not dust (fine structures in spectra), albeit correlate with $A_{\rm V}$

History of molecules in space

- Radio telescopes:
 - HI2I cm: Ewen & Purcell (1951)
 - OH 18 cm: Weinreb et al. (1963)
 - NH₃ I cm: Cheung, Townes et al. (1968)
 - H₂O I cm: Cheung et al. (1969)
- UV telescopes: Copernicus (1970): H₂ at
- ~125nm (1970), later N₂
- (Sub-)millimeter telescopes: CO at 115 GHz (1970), H₂CO (1970), and many others

Orion KL Survey, 3 mm, IRAM 30-m

Orion KL Survey, 3 mm, IRAM 30-m

Orion KL map, Imm, Submillimeter Array

Wang et al. (2008)

History of molecules in space

- IR telescopes:
 - IRAS (1983): 0.6 m, 12–100 μ m, first sky survey, dust (β Pictoris disk)
 - Infrared Space Observatory (1995–1998): 0.6 m, 2.5–240 μ m, dust & molecules (H₂O, HF, OH, OI, C₆H₆, CH₃, CO₂, ...), infrared cirrus clouds
 - Spitzer Space Telescope (2003–2009): 0.8 m, 3–180 μm, highsensitivity imaging and mapping, dust & molecules (OH, H₂O, C₂H₂, ...)
 - Herschel Space Observatory (2009–2012): 2.4 m, 60–670 μm, highsensitivity imaging and mapping, dust & molecules (CH₃OH, H₂S, HCN, SO₂, H₂CO, H₂O, ...)
 - Ground-based: Keck, VLT, ...

Molecules, exoplanet WASP-12b, Spitzer

O₂ in Orion, 487–1121 GHz, Herschel

Goldsmith et al. (2011)

Detected molecules (~170)

H2	H3+	СНЗ	CH4	СНЗОН	CH3NH2	НСООСН3	(CH3)2O	(CH3)2CO
со	CH2	NH3	CH2NH	СНЗЅН	СНЗССН	CH3C3N	С2Н5ОН	CH3C5N
CS	NH2	H3O+	H2CCC	C2H4	СНЗСНО	НС6Н	C2H5CN	СН3СН2СНО
CN	H2O	H2CO	c-C3H2	CH3CN	c-CH2OCH2	С7Н	СН3С4Н	(CH2OH)2
C2	H2S	H2CS	CH2CN	CH3NC	CH2CHCN	НОСН2СНО	С8Н	HCOOC2H5
СН	ССН	c-C3H	NH2CN	СН2СНО	HC5N	СНЗСООН	HC7N	HC9N
CH+	HCN	I-C3H	CH2CO	NH2CHO	С6Н	H2CCCHCN	CH3CONH2	СН3С6Н
HF	HNC	C2H2	нсоон	HC3NH+	СН2СНОН	H2C6	CH3CHCH2	C6H6
CF+	нсо	HCNH+	C4H	H2CCCC	С6Н-	СН2СНСНО	C8H-	C3H7CN
SiO	HCO+	H2CN	HC3N	С5Н		NH2CH2CN		HCIIN
SiS	HOC+	HCCN	HCCNC	HC4H				С2Н5ОСН3
SiC	N2H+	HNCO	HNCCC	HC4N				
SiN	HNO	HOCN	H2COH+	c-C3H2O				
NH	HCS+	HCNO	C4H-	CH2CNH				
NO	C3	HNCS	SiH4	C5N-				
SO	C2O	HSCN	C5	C5N				
SO+	C2S	C3N	SiC4					
СР	SO2	C3O	СИСНО					
PO	N2O	C3S						
PN	CO2	C3N-						
HCI	H2O+	HCO2+						
KCI	H2CI+	CNCHO						
AICI	OCS	C-SiC2						
ОН	MgNC				AIF	AINC	AIOH	NaCl
OH+	MgCN				SiNC	ССР	НСР	FeO
SH	NaCN				CO+	O2	N2	
CN-	SiCN							

http://www.astro.uni-koeln.de/cdms/molecules

Detected molecules

- I70 interstellar & circumstellar molecules
- 41 extragalactic molecules
- Up to 11 atoms (since 2010 => 70)!
- 20 positive ions (cations)
- 6 negative ions (anions)
- ~30 free radicals
- ~20 isomers
- 6 linear and 6 cyclic species (including simplest PAH, C₆H₆)
- 11 Si-, 6 P-, and 5 Cl-bearing species
- II metal-bearing species
- 10 species with deuterium
- Organic molecules: ethers, acids, alcohols, aldehydes, ...

Detection of fullerenes (C₆₀ & C₇₀)

Astronomer's periodic table

• 99% gas, 1% dust (by mass), depletion of refractory elements

McCall (2001)

Interstellar Dust

- Formed in AGB stars & grow in the ISM/CSM
- Small, ~0.01–1 µm
- Silicate core, with refractory materials (most of Si, Mg, Fe)
- Carbonaceous material (~30% of O, ~60% of C)
- Abundance $\sim 10^{-12}$ wrt to H_2
- $T_{kin} < 150$ K: condensation of gas => icy mantles

How molecules form, survive, and "shine"?

Next lectures!