Episodic Accretion in Young Stars

Lead: Marc Audard (University of Geneva)
Presenter: Joel Green (Univ. Texas at Austin)
Péter Ábrahám, Michael Dunham, Nicolas Grosso, Kenji Hamaguchi, Joel Kastner, Ágnes Kóspál, Giuseppe Lodato, Marina Romanova, Stephen Skinner, Eduard Vorobyov, Zhaohuan Zhu
Sources of Variability

• Intrinsic luminosity changes (this talk)
• Variable extinction (flared disks, periodic obscuration)
On the Episodic Outbursts of Young Stars

-Does episodic accretion play an important role in star formation?
 -Archetypal sources FU Orionis and EX Lupi
-How has our understanding of these objects changed since 1996, observationally?
-How has our understanding changed theoretically?
 -Are FUors/EXors evidence of episodic accretion?
 -Are FUors/EXors the same class of objects?
The FU Orionis Eruption: 1936

Hartmann & Kenyon, 1996, ARAA, 34, 207

Courtesy: C. Briceno

Much wider than blackbody
Additional FUors 1950-1978

Protostar to Protoplanetary Disk: the Nature of Accretion

\[\frac{dM}{dt} \text{(wind)} \sim 0.1 \frac{dM}{dt} \text{(acc)} \]

\[\frac{dM}{dt} \text{(infall)} \sim 10^{-5} \]

\[\frac{dM}{dt} \text{(disk)} \sim 10^{-4} - 10^{-7} \]

Modified from Hartmann & Kenyon, 1996, ARAA, 34, 207
• Steady accretion model + hot inner disk extending from 5 R_\odot to 0.5-1 AU
• Decay timescale: $t_{\text{visc}} \sim R^2/\nu \Rightarrow \alpha \sim 0.01-0.1$
How significant are the bursts?

(Updated from Hartmann & Kenyon, 1996, ARAA, 34, 207)

FUors are rarely seen... but they are common events!

Within 1 kpc of the Sun:

$10^4 - 10^5$ T Tauri stars x avg. accretion rate $10^{-8} \, M_\odot \, yr^{-1} = 10^{-3} \, M_\odot \, yr^{-1}$

8 FUors, combined accretion rate \sim few $x \, 10^{-4} \, M_\odot \, yr^{-1}$

-FUors are responsible for $\sim 10\%$ of the current nearby accretion

About 8 FUors since 1936; average star formation rate $1 / 50 \, yr$

-FUors occur at several times the rate of star formation; averaging multiple bursts per star
EX Lup: Multiple Bursts

1955: EX Lupi was seen to outburst to a somewhat lesser degree, and much shorter timescale, and was referred to as an “EXor” (Herbig, 1989, ESO Workshop, 233)

And again in 2008: Ábrahám et al., 2009, Nature, 459, 224
Why study these sources?

• Represent stages wherein most of the YSO mass may be accumulated
• Accretion mechanism may differ from the classical magnetospheric TTS accretion model: "new" accretion physics
• Diagnostic for outburst triggering mechanisms, an important problem
• Offer "unveiled" examples of YSOs with accretion rates comparable to embedded sources
EXors and FUors are a Natural Laboratory for Accretion Physics

Ábrahám et al., 2009, Nature, 459, 224

Courtesy: R. Hurt, SSC
FUors vs. EXors, observationally

• Commonalities:
 – low mass pre-main sequence stars
 – Show strong optical outbursts
 – IR excess indicating circumstellar disk material (gas and dust)
 – Variability is primarily* accretion-driven

EXor Timescales Allow Characterization of the Complete Burst

Herbig G. H., 1977, AJ., 217, 693
FUors vs. Protostars

Previously noted similarities at submillimeter wavelengths (e.g. Sandell & Weintraub, 2001, ApJS, 134, 155);

Consistent with the Spitzer/Herschel perspective

Green et al., in prep.

<table>
<thead>
<tr>
<th>Characteristic Properties, Classically</th>
<th>FUor (all remain in outburst)</th>
<th>EXor (during outburst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical burst strength</td>
<td>4-6 mag; 20-500 L_\odot</td>
<td>3-5 mag; 0.5-20 L_\odot</td>
</tr>
<tr>
<td>Optical line profiles</td>
<td>Fe I, Li I, and Ca I double-peaked/broadened profiles</td>
<td>Infall and outflow signatures in Na I D$_{1,2}$ – like CTTS (P Cygni profiles)</td>
</tr>
<tr>
<td>Repeated burst?</td>
<td>Not in human timescale</td>
<td>Yes ~ 1/few yrs</td>
</tr>
<tr>
<td>IR line profiles</td>
<td>first-overtone</td>
<td>CO bandhead emission and absorption, variable</td>
</tr>
<tr>
<td></td>
<td>CO absorption at 2.2 μm;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>double-peaked profiles</td>
<td></td>
</tr>
<tr>
<td>Inferred accretion rates</td>
<td>> 10^{-6} –10^{-4} M$_\odot$ yr$^{-1}$</td>
<td>10^{-7} –10^{-5} M$_\odot$ yr$^{-1}$</td>
</tr>
<tr>
<td>Extended reflection nebula?</td>
<td>Yes</td>
<td>Sometimes</td>
</tr>
<tr>
<td>Spectral type</td>
<td>F-M, wavelength dependent</td>
<td>K-M</td>
</tr>
<tr>
<td>Pre-Main Sequence Stage; envelope?</td>
<td>I/II</td>
<td>II ?</td>
</tr>
<tr>
<td>Crystalline silicates</td>
<td>No</td>
<td>During outburst</td>
</tr>
<tr>
<td>Burst rise time</td>
<td>0.3-10 yr</td>
<td>~ 0.1-0.3 yr</td>
</tr>
<tr>
<td>Burst decay time (e-folding)</td>
<td>> 20-100 yr</td>
<td>0.5-2 yr</td>
</tr>
</tbody>
</table>
FUor Subgroups

“Embedded”

“Flared Disk”

Inclination effect?

Figure from Quanz et al., 2007, ApJ, 668, 359; see also Green et al., 2006, ApJ, 648, 1099
New Outbursts
The Case of V1647 Ori

One year after return to quiescence

V1647 Ori/ McNeil’s Nebula
Meanwhile, in Cygnus...

August 17, 2010: Semkov & Peneva (2010), ATel, 2801, announces outburst
September 24: HBC 722/V2493 Cyg reaches maximum light and begins decaying

Region in between the North America & Pelican Nebulae, distance 520 pc

Nearly Simultaneously, an EXor with a slow rise time but fast decay time

V2492 Cyg
Kóspál et al., 2011, A&A 527, 133
The Distinction via Lightcurve is Becoming Less Straightforward

Based on data from Kóspál et al., 2011, A&A, 527, 133 and from AAVSO

Difficult to classify outburst type from early behavior!

Hartmann & Kenyon, 1996, ARAA, 34, 207
Can X-rays Distinguish Between EXors and FUors? Do X-rays follow accretion processes?

For V1647 Ori, yes

.... But not for V1118 Ori

Weak correlation between X-ray and IR (also for EX Lup)

Audard M. et al. (2005) AJ, 635, L81

At least *some* (soft) X-rays in EXors arise in accretion shocks
X-Rays from FUors

- FUors are X-ray bright, compared to X-ray active T Tauri stars, but not relative to the total system output
- Multiple (hard and soft) X-ray components sometimes seen but can be attributed to binaries?

Hard X-rays = magnetically-driven
Soft X-rays = accretion processes

e.g. Grosso et al. 2010, A&A 522, A56

- 1-day periodicity stable over five yr
- (caveat: flux amplitude is relative)
- Star/disk magnetospheric geometry is highly stable
Detailed model of the disc–star interaction and the formation of a conical wind. The wind/outflow base originates very close to the stellar photosphere.

- Infalling matter compresses the magnetosphere of the star
- Field lines enhanced via differential rotation between disk and star
- Conical winds & outflows twist from the inner disk

Figure from Königl A et al. MNRAS 2011;416:757-766
The Mid-IR: Long-Term Outburst Effects

Does dust processing from flash heating (or vertical transport and stirring of dust grains) occur on few month timescales?
What sets the conditions in the protoplanetary disk?

• In the usual paradigm, the Class I protostar lifetime is \(\sim 0.5 \) Myr, during which the envelope thins and eventually vanishes.

• The accretion rate from disk to star diminishes and planets form, perhaps early on by gravitational instability, and then later by core accretion, and other processes.

• But does accretion decrease steadily from \(10^{-5} \) in Class I to \(10^{-8} \) in T Tauri stars, to \(10^{-10} \) or less in Class III sources?
Empirical Prediction \rightarrow New Accretion Paradigm

Magnetorotational + Gravitational Instability Model (MRI+GI)

GI: Outer Disk: Q~1
MRI: Inner Disk (hot/ionized)
Transition region: (1-10 AU) GI-MRI junction not smooth => episodic accretion
Predicts correct outburst strength and timescale
But the details of MRI triggering are uncertain

Martin & Lubow 2011, AJ, 740, 6

GI: Outer Disk: Q~1
MRI: Inner Disk (hot/ionized)

Transition region: (1-10 AU) GI-MRI junction not smooth => episodic accretion
Predicts correct outburst strength and timescale
But the details of MRI triggering are uncertain
Accretion bursts due to disk fragmentation in the embedded phase

If Toomre parameter $Q \leq 1.0$ and disk cooling is fast ($\Omega \times t_c < \text{a few}$), disk fragmentation can occur (e.g. Gammie 2001, ApJ, 553, 174)

Face-on view on the inner 400x400 AU, The total computational box is 10 times larger.

Black regions are not empty but filled with infalling envelope (off the scale)

protostellar accretion rate $10^{-5} M_\odot / \text{year}$

Modeled Outburst Frequency via Disk Instability

EX Lup (AAVSO; 1955-2010)

Or binary companion?

Outbursts affect chemistry

CO-gas phase fraction in the envelope steeply rises during the burst and gradually declines after the burst. The relaxation time to the pre-burst stage is notably longer than the burst duration.

Looking forward: what are the contributions of the FUor/EXor observational group to our understanding of young stars?
Looking forward (1)

• Are FUors and EXors regularly occurring events, or are they special cases of young stars?
 – Evidence for episodic accretion comes from both observation and theory
 • Observed burst frequencies, accretion rates, lifetime estimates from decay times all match the idea that 5-10% of total YSO accretion occurs in FUor bursts
 • Offer a partial solution to the transport of newly crystallized small dust grains in disks
 • Theory of duty cycles from episodic accretion models agrees with observed timescales
 • Chemical evolution models (increased CO gas abundance, CO$_2$ ice processing in currently low luminosity stars)
 • Outflow morphology (bullets, multiple epochs)
Looking forward (2)

• Are FUors and EXors different classes?
 – Clear distinction has blurred through intermediate cases like V1647 Ori, V2492 Cyg, and HBC 722
 – Primary remaining distinction is the timescale
The Future of Episodic Accretion Studies

- ALMA continuum/line imaging -> envelope vs. disk masses -> evolution stage
- Comprehensive large-field monitoring facilities (PTF, LSST) to detect new eruptive stars early in outburst
- WISE will help detect new sources, more deeply embedded eruptive stars
The Next Step

• Move away from FUor vs. EXor classification
• Modeling to better understand accretion burst mechanisms
• Identify key parameters controlling bursts
• These objects are no longer oddities, but fundamental to the analysis of the evolution of young stars!