Disk-Disk Interactions and Orbitally-Modulated Accretion in the DQ Tau System

Jeffrey S. Bary1 and Michael Petersen2

1Department of Physics and Astronomy, Colgate University, Hamilton, NY (USA) 13346
2Department of Astronomy, University of Massachusetts, Amherst, MA (USA) 01003
E-mail: jbar@colgate.edu, mpeters@astro.umass.edu

Abstract

We present multi-epoch low and moderate resolution near-infrared spectra of the high eccentricity tight binary, DQ Tau. Similar to activity previously recorded in optical spectra, we see clear evidence of orbitally-modulated accretion activity phased withperiastron passages in the system. However, during one of four apastron passages observed, we measure a significant enhancement in the infrared accretion indicators. The potentially anomalous accretion flare is interpreted as matter passing directly from the circumbinary disk onto one or both of the highly truncated circumstellar disks. The nature and frequency of these disk-disk interactions are important for constraining binary models of accretion activity in such systems as well as in young planetary systems containing forming gas giants. We also explore a consistent spectral typing mismatch between atomic and molecular band absorption features. We determine that this discrepancy is consistent with the formation of the molecular features within large cool spots on the stellar surface(s) and is not due to the lower surface gravity associated with the contracting T Tauri stars. In addition to changes in continuum veiling, variations observed in the strength of the TiO bands at 0.85 and 0.88 µm could be explained by spot evolution and the heating of these spots during accretion events.

The DQ Tau System

DQ Tau is a tight binary (P=15.8016 days; a = 0.13 AU)2 composed of two nearly equal mass stars (~0.33 M☉) on a highly eccentric orbit (e = 0.56)2. Multi-epoch broad-band photometry and optical spectroscopy have revealed periodic flares in this system that are phased with periastron passages3-5. The flaring activity depicted in Figure 1a is well-described by hydrodynamic models that predict orbitally-modulated flares of material between the outer circumbinary disk and the inner thread of material6-8. It has also been demonstrated that magnetospheric interactions contribute to the flaring activity, but cannot entirely account for the duration of the flares5,7,9.

Spectral Typing and Cool Star Spots

Moderate resolution near-IR spectra collected with SpeX (IRTF) and TripleSpec (Apache Point Observatory) provide an opportunity to measure the spectral type for DQ Tau. Figure 1b presents a sequence of spectral standards and one SpeX observation of DQ Tau dereddened using the three values for A_v found in the literature and the reddening law from Martin 199010. For the lowest A_v value, the shape of the spectrum is best matched by a late M-type star (M5V & M6V), which is far cooler than the M0-1.5V spectral type often quoted for DQ Tau. The strengths of multiple temperature sensitive metallic features are in better agreement with the earlier M spectral types (Figure 2a). This is also true for m with the earlier M spectral types. The strengths of multiple temperature sensitive metallic features are in better agreement with the earlier M spectral types (Figure 2a). This is also true for m with the earlier M spectral types.

Apastron Flare and Disk-Disk Interactions

On back-to-back nights 2008 October 4 & 5 UT (e = 0.372 & 0.433), we detect an accretion-like flare as the system approaches apastron (see Figures 3b & 4). The mass accretion rate measured for the anomalous flare is an order of magnitude stronger than the quiescent accretion activity observed during the majority of the orbit. Little evidence currently exists to suggest that orbitally-modulated accretion flares occur near apastron when the stars make their closest approach to the circumstellar disk. Hydrodynamic models of circumstellar-circumbinary disk interactions predict that pulsed-accretion activity phased with periastron passages is dominated by interactions between the circumstellar disks5. The timing of the anomalous flare with respect to an apastron passage suggests that this outburst is due to the interactions of the circumbinary disk(s) with the circumstellar disk(s) near four apastron passages observed with infrared spectra, only one shows obvious signs of flaring activity above the quiescent accretion level. With no other reported detections of accretion flares, we interpret these events occur more rarely than those at periapsis. Long term monitoring of such light binary systems will be important for understanding orbitally-modulated accretion activity in these system and analogous young planetary systems with forming gas giants.

References

3de Val-Borro, M., et al. 2011, MINERAS, 415, 2679
10Benedig, S. et al. 1992, Soviet Astronomy Letters, 18, 445
17Hartman, S. & Levrault, R. 1996, AI, 100, 1391

Figure 1: a) Left: Example of two low resolution DQ Tau spectra observed nine days apart with CoRoT on the Vatican Advanced Technology Telescope. The top spectrum taken near periastron (φ=0.876) and the second just before apastron (φ=0.437). Note the strong H I emission features and other accretion signatures present in the top spectrum. An M2.5V SpeX IRTF spectral standard is included for comparison. Regions of poor and moderate atmospheric transmission are denoted by the gray (<80%) and dark gray (<20%) vertical boxes. b) Right: Sequence of M dwarf spectra with the earlier M spectral types (Figure 2a). This is also true for m with the earlier M spectral types. The strengths of multiple temperature sensitive metallic features are in better agreement with the earlier M spectral types (Figure 2a). This is also true for m with the earlier M spectral types.

Figure 2: a) Left: A comparison of M dwarf spectra to a dereddened spectrum of DQ Tau for A_v = 0.97. M dwarfs chosen to bracket DQ Tau based on strengths of the TiO and FeH features. The residual spectrum is the difference between DQ Tau and the M0.5V standard. b) Right: A similar comparison over a different wavelength regions containing several metal lines. Residuals shows the the metal features more strongly agree with the earlier M type standards, while the strength of the 1.33 µm water band suggests a cooler spectral type.

Figure 3: a) Left: Veiling is plotted as a function of wavelength determined from Fe I (1.189, 1.253, 1.589, Mg I (1.589, Fe I (1.676), and Al I (1.177) µm) for seven epochs of DQ Tau spectra using the non-accreting T Tau star, LkCa 3 (M1V), as a reference. Color coding represents the proximity in orbital phase of the observation to periastron. b) Right: Plotted from 0.8 to 1.3 µm are 15 DQ Tau spectra arranged by orbital phase.

Figure 4: a) Plots of the Pa Î emission feature for all 21 observations of DQ Tau. Moderate resolution observations have deresolved spectra overplotted for comparison. b) A log plot of the mass accretion rates as a function of phase were determined from Pa Î fluxes. The flare values detected near apastron are circled in red. Upper limits are denoted with down arrows.