Protostars and Planets VI, Heidelberg, July 15-20, 2013

Poster 2S041

The interplay between X-ray photoevaporation and planet formation

Rosotti, Giovanni (MPE Garching)
Ercolano, Barbara (USM Munich)
Owen, James (CITA Toronto)
Armitage, Phil (JILA Boulder)

Planets form from gas and dust discs that orbit young stars. The evolution and final dispersal of protoplanetary discs holds therefore a particular importance, especially in terms of timescales. In particular, observations reveal that most (if not all) discs go through the \"transitional disc\" phase, which is currently interpreted as the last stage before the disc dispersal. Photoevaporation and planet formation have been studied as possible physical mechanisms responsible for the formation of these discs. While it is likely that more than one mechanism is at play, the interplay between them has until now not been studied in detail. I will show results from 2d simulations of protoplanetary discs undergoing X-ray photoevaporation with an embedded giant planet. By reducing the mass accretion flow onto the star, discs thatw form giant planets will be dispersed at earlier times than discs without planets by X-ray photoevaporation. This process, planet formation induced photoevaporation (PIPE), is able to produce transition disc that for a given mass accretion rate have larger holes when compared to standard X-ray photoevaporation. This constitutes a possible route for the formation of the observed class of accreting transition discs with large holes, which are otherwise difficult to explain by planet formation or photoevaporation alone. Moreover, assuming that a planet is able to filter dust completely, PIPE produces a transition disc with a large hole and may provide a mechanism to quickly shut down accretion. This process appears to be too slow however to explain the observed desert in the population of transition disc with large holes and low mass accretion rates.

Click here to view poster PDF