Protostars and Planets VI, Heidelberg, July 15-20, 2013

Poster 2H034

The Formation of Giant Planets and the Collisional Evolution of Planetesimals: Lessons Learned from the Solar System

Turrini, Diego (INAF-IAPS)

The formation of giant planets is one of the milestones in the history of planetary systems, as they shape the evolution of the protoplanetary disks they are embedded in. While observational facilities approach the sensitivity necessary to probe these primordial phases in disks around other stars (e.g. Quanz et al. 2013), there are still lessons we can draw from our own Solar System. Safronov (1969) was the first to recognize that the formation of Jupiter would trigger the first bombardment in the history of the Solar System by scattering of planetesimals residing near its formation region. This scenario was further explored by Weidenschilling (1975) and Weidenschilling et al. (2001), who observed that part of these planetesimals ejected from the outer Solar System would cross the asteroid belt and contribute to the catastrophic destruction of primordial asteroids. Later, Turrini et al. (2011) showed that the appearance of the orbital resonances with Jupiter in the asteroid belt would create a second but dominant population of impactors. The combination of these two populations of impactors represents the Jovian Early Bombardment (Turrini et al. 2011). The formation of Jupiter is the sole necessary condition to trigger the Jovian Early Bombardment, yet migration can play an important role in enhancing its effects due to the sweeping of the resonances through the asteroid belt (Turrini et al. 2011). Across the Jovian Early Bombardment, collisional erosion played a more important role than catastrophic impacts and could bring to the destruction of planetesimals of 200 km in diameter or even larger (Turrini et al. 2012). As pointed out by Turrini et al. (2012), the processes causing the Jovian Early Bombardment are not exclusive to the Solar Nebula: they are general to all circumstellar disks that host forming giant planets. As a consequence, all these results describe an evolutionary path that is common to planetary systems where giant planets are forming and migrating.

Click here to view poster PDF