Protostars and Planets VI, Heidelberg, July 15-20, 2013

Poster 2H018

The GENGA Code: Gravitational Encounters in N-body simulations with GPU Acceleration.

Grimm, Simon (Universität Zürich)
Stadel, Joachim (Universität Zürich)

Abstract:
We present a GPU (Graphics Processing Unit) implementation of a hybrid symplectic N-body integrator based on the Mercury Code (Chambers 1999), which handles close encounters with a very good energy conservation. It uses a combination of a mixed variable integration (Wisdom & Holman 1991) and a direct N-body Bulirsch-Stoer method. GENGA is written in CUDA C and runs on NVidia GPU\'s. The GENGA code supports three simulation modes: Integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. To achieve the best performance, GENGA runs completely on the GPU, where it can take advantage of the very fast, but limited, memory that exists there. All operations are performed in parallel, including the close encounter detection and grouping independent close encounter pairs. Compared to Mercury, GENGA runs up to 30 times faster. Two applications of GENGA are presented: First, the dynamics of planetesimals and the late stage of rocky planet formation due to planetesimal collisions. Second, a dynamical stability analysis of an exoplanetary system with an additional hypothetical super earth, which shows that in some multiple planetary systems, additional super earths could exist without perturbing the dynamical stability of the other planets (Elser et al. 2013).

Click here to view poster PDF