Protostars and Planets VI, Heidelberg, July 15-20, 2013

Poster 1K054

MASSIVE MOLECULAR OUTFLOWS TOWARD METHANOL MASERS: BY EYE AND MACHINE LEARNING

de Villiers, Helena (University of Hertfordshire)

Abstract:
The best known evolutionary state of massive stars is that of the UC HII region, occurring a few 10^5 years after the initial formation of a massive YSO. Currently objects in the “hot core” phase, occurring prior to the UC HII region, are studied with great interest. Because the YSO is still supposed to be accreting at this stage, one would expect outflows from the central object to develop during this phase, entraining surrounding cold molecular gas in their wake. During this time, 6.7 GHz (Class II) methanol masers will also turn on. They are uniquely associated with massive YSO’s, thus serve as a useful signpost. We searched for molecular outflows with the JCMT and HARP focal plane array in a sample of targets toward 6.7 GHz methanol maser coordinates within 20 < Glon < 34. We found 58 CO clumps but only 47 of them were closely associated with the methanol masers. Their spectra were analyzed for broadened line wings, which were found to be present in 46 of the spectra, indicating either bi- or mono-polar outflows. This is a 98% detection frequency. The velocity ranges of these spectrum wings were used to create two dimensional blue and red maps. The out flows’ physical parameters were calculated and compared with literature. We created a catalog of kinematic distances and properties of all the 13CO outflows associated with Class II methanol masers, as well as their associated H_2 core and virial masses as derived from the C18O data. In the the light of our results we emphasize the need for an automated detection process, especially with the increasing number of wide-area surveys. We are currently exploring the use of machine learning algorithms (specifically Support Vector Machines) in the detection of high velocity structures in p-p-v cubes.

Click here to view poster PDF