Radio Videos of Orion Protostars (WITH X-RAY COLORS!)

Jan Forbrich1, Scott J. Wolk3, Karl M. Menten1, Mark J. Reid1, & Rachel A. Osten2

1Harvard-Smithsonian CfA, 2University of Vienna, 3MPIfR Bonn, 4STScI Baltimore

Abstract

High-energy processes in Young Stellar Objects (YSOs) can be observed both in X-rays and in the centimetric radio wavelength range. While the past decade has brought a lot of progress in the field of X-ray observations of YSOs, (proto-)stellar centimetric radio astronomy has only recently begun to catch up with the advent of the newly expanded Karl G. Jansky Very Large Array (JVLA). The enhanced sensitivity is fundamentally improving our understanding of YSO radio properties by providing unprecedented sensitivity and thus spectral as well as temporal resolution. As a result, it is becoming easier to disentangle coronal type nonthermal radio emission emanating from the immediate vicinity of YSOs from thermal emission on larger spatial scales, for example ionized material at the base of outflows. Of particular interest is the correlation of the by now relatively well-characterized X-ray flaring variability with the nonthermal radio variability. We present first results of multi-epoch simultaneous observations using Chandra and the JVLA, targeting the Orion Nebula Cluster and highlighting the capabilities of the JVLA for radio continuum observations of YSOs.

The Orion Nebula Cluster

While several simultaneous X-ray and radio observations of young stellar objects (YSOs) have been carried out previously (e.g., Gagné et al, 2004, Forbrich et al. 2007, 2011), they were primarily limited by low numbers of sources and insufficient radio sensitivity to identify nonthermal emission. The ONC provides a sample of 77 known radio sources in the same field of view (Zapata et al. 2004, “old” VLA data).

Science questions

- When do protostars become radio-active in the cm range?
- What is the census of non-thermal emission in particular?
- Why did we so far see so few of those? SN?
- What are the statistics of radio flaring for young stellar objects?
- Are radio flares correlated with X-ray flares?

Why now? Now or never!

In the X-ray range, high-energy processes in young stellar objects (YSOs) have been studied in considerable detail over the past decade, using Chandra and XMM-Newton. X-ray flaring, for example, is now well characterized. At the same time, radio studies of YSOs have been hampered by insufficient sensitivity for spectral and variability studies. With the advent of the newly expanded Karl G. Jansky Very Large Array, (proto-)stellar radio astronomy is entering a new age of exploration.

Data reduction and first results

The data reduction of the Chandra observations has been carried out using acis_extract (Broos et al. 2010). This facilitates the comparison of the data rates are... high.

Chandra and the newly expanded Karl G. Jansky Very Large Array

Using the newly expanded continuum bandwidth of the VLA, we have obtained about 24 hours of simultaneous VLA and Chandra observations of the Orion Nebula Cluster (ONC). These were observed in four epochs scheduled within four consecutive days. The VLA observations were obtained in the 4-8 GHz band, providing a field of view of up to 11’ FWHM, almost matching Chandra-AICS. The data rates are... high.

Why simultaneous? While there is a lot of interest in the new centimeter radio view of the ONC alone, any study of the connection between X-ray and radio variability (e.g., flaring) ideally requires simultaneous multi-wavelength observations. The ONC provides a large number of sources accessible in a single VLA pointing.

The radio–X-ray connection

Both X-rays and nonthermal radio emission, usually gyro-synchrotron radiation, probe the innermost vicinities of protostars.

With sufficient time resolution, a correlation of the radio- and X-ray light curves in flares according to the Neupert effect (Neupert 1968) has been observed on the Sun and a few other stars. Essentially, the radio emission is thought to trace the initial energy injection of the flare which is heating the gas to emit thermal X-rays.

Science questions

- What are the statistics of radio flaring for young stellar objects?
- Are radio flares correlated with X-ray flares?

Why now? Now or never!

In the X-ray range, high-energy processes in young stellar objects (YSOs) have been studied in considerable detail over the past decade, using Chandra and XMM-Newton. X-ray flaring, for example, is now well characterized. At the same time, radio studies of YSOs have been hampered by insufficient sensitivity for spectral and variability studies. With the advent of the newly expanded Karl G. Jansky Very Large Array, (proto-)stellar radio astronomy is entering a new age of exploration.

Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO2-13019X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under expedition agreement by Associated Universities, Inc.