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ABSTRACT

Observations of atomic or molecular lines can provide important information about the physical state of star forming regions. In order to investigate the line profiles arising from dynamical
collapse in massive star forming regions (MSFRs), we model the emission from hydrodynamic simulations of a collapsing cloud in the absence of outflows. By performing radiative transfer
calculations, we compute the optically thick HCO* and optically thin N,H* line profiles from two collapsing regions at different epochs. Due to large-scale collapse, the MSFRs have large
velocity gradients, reaching up to 20 kms-!pc-! across the central core. The optically thin lines typically contain multiple velocity components resulting from the superposition of numerous
density peaks along the line-of- sight. The optically thick lines are only marginally shifted to the blue side of the optically thin line profiles, and frequently do not have a central depression in
their profiles due to self-absorption. As the regions evolve the lines become brighter and the optically thick lines become broader. The lower order HCO+ (1-0) transitions are better
indicators of collapse than the higher order (4-3) transitions. When sightlines pass through filaments or the central protostar of MSFRs optically thick line profiles generally portray the blue
asymmetry associated with the large scale collapse motions. Low mass star forming regions do not always show a blue asymmetry, as the surrounding medium may or may not be collapsing.
We also investigate how the beam sizes affect profile shapes. Smaller beams lead to brighter and narrower lines. The blue asymmetry becomes more pronounced with decreasing beam size,

suggesting that high resolution observations (e.g. with ALMA) can provide insight into the nature of MSFRs
2. LINE PROFILES

1. THE SIMULATIONS
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dynamic collapse during the early evolution of Massive Star Forming The resulting line profiles show three key features
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3. The optically thin emission lines often exhibit
multiple components due to other dense cores
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4. THE EFFECT OF BEAM
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A 1-0 1.85 x 10° 1.55x 1071 8 E‘QT 3.95 Table 3. As in Table 1 but for three different beam sizes. dlrECtly tested with ALMA.
A 2-1 1.10 x 108 4.11 x 10~1 8 4.79 3.79
A 3-2 3.51 x 10° 131 x 1072 6 3.83 3.61 .
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B 43 0.07 x 106 2.03x 1073 2 1.99 3.20 with a blue excess of over 0.5 kms"'.
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