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Gravitational waves and cosmic expansion: similarities and
di↵erences

Markus Pössel, Haus der Astronomie Heidelberg

Gravitational waves and cosmic expansion are both described in terms of Einstein’s general re-
lativity. This article explores the similarities between the two phenomena, as well as some
di↵erences, using the fundamental concept of the metric of spacetime. In both contexts, the fo-
cus is on the metric of space, as opposed to the metric components determining the properties
of time, which allows for a simplified, more accessible discussion.

The main focus of this summer school is on
gravitational waves. But in order to under-
stand how these waves interact with matter
(including gravitational wave detectors), it is
helpful to take a broader view that includes
not only gravitational waves but another phe-
nomenon intimately connected with the re-
lativistic description of our universe: cosmic
expansion as the basis for our current models
of cosmology. Both phenomena are described
in terms of the spacetime metric encoding the
geometry of space and time. We begin by
introducing the concept of spacetime metrics
over the next three sections.

The three–fold role of coordinates

Usual Cartesian coordinates in physics serve
a threefold purpose. For one, they provide
a scheme for naming points in space. Once
you have introduced your Cartesian coordin-
ate system, it is as if every point in space were
sporting a little name tag, bearing a unique
name such as (1.0, �2.6, 9.1) or similar. The
unique name can be used to refer to that spe-
cific point, and that point only.

In addition, the coordinate values encode
some information about proximity. In the
Cartesian plane, the point (0, 0.5) is closer to
the point (0, 0.4) than to the point (0, 9.5).
Finally, Cartesian coordinates allow for a dir-
ect computation of distances between points.
Given two points and their coordinates, say
P1 = (x1, y1, z1) and P2 = (x2, y2, z2), their
distance s is given by

s =
p

(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2,
(1)

corresponding to a three-dimensional version
of Pythagoras’ theorem that can be abbrevi-
ated as

s2 = �x2 + �y2 + �z2. (2)

An additional bonus is that when we plot
points in Cartesian coordinates, say the points
in a plane, we usually make sure to draw all
distances faithfully. Hence, in the usual xy
coordinate system, drawn on a piece of paper,
we can simply use a ruler to directly measure
the distances between points, and rest assured
that calculations using point coordinates will
yield the same result (bar scale factors linking
the scale of our drawing and the scale of the
ruler). This is, of course, a teaching tool that
is used extensively in a school setting.

For more general spaces and surfaces, and
even for non-Cartesian coordinates in regular,
Euclidean space or on a Euclidean space (such
as spherical coordinates or polar coordinates),
the relationship between distances and co-
ordinate values is more complex. A simple,
one-dimensional example is that of a row of
houses, numbered with integers, as sketched
in figure 1.

An additional bonus is that when we plot points in Cartesian coordinates, say the points
in a plane, we usually make sure to draw all distances faithfully. Hence, in the usual
xy coordinate system, drawn on a piece of paper, we can simply use a ruler to directly
measure the distances between points, and rest assured that calculations using point
coordinates will yield the same result (bar scale factors linking the scale of our drawing
and the scale of the ruler). This is, of course, a teaching tool that is used extensively in
a school setting.

For more general spaces and surfaces, and even for non-Cartesian coordinates in
regular, Euclidean space or on a Euclidean space (such as spherical coordinates or
polar coordinates), the relationship between distances and coordinate values is more
complex. A simple, one-dimensional example is that of a row of houses, numbered
with integers, as sketched in figure 1. To begin with, the house numbers are merely
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Figure 1: A row of houses, numbered with integers

markers for each house; in our simple sketch, they have been associated with the cen-
ter of the house, determined along the one-dimensional street. We can extend these
numbers to a one-dimensional coordinate system by subdividing the distance between
one marker and the next evenly; the point half-way between houses no. 4 and 5, for
instance, would be the point with coordinate 4.5, and the point three-quarters of the
way between houses 2 and 3 would have 2.75 as its coordinate.

Coordinates defined in this way perform two of the three roles we identified for
Cartesian coordinates: they uniquely identify each point along the street, and they
encode proximity: regarding house no. 3, house no. 5 is further away than house no.
4.

What the coordinates do not allow is for a direct calculation of distances – at least
not without additional information. On the other hand, this changes if we have infor-
mation about the distances between the houses – how far away is the mark in front of
no. 1 from that in front of no. 2? How far away is the no. 2 mark from the no. 3 mark,
and so on? If we know that, say, the no. 4 and no. 5 marks are 6.8 m apart, then we
know that our point 4.5 is 3.4 m from the mark no. 4, and the same distance from the
no. 5 mark.

With this additional information, we can use our coordinates to compute distances
between points along the street – as long as we have that additional input, the informa-
tion about how far the houses are apart. This additional information is our first example
of a metric: a set of information that allows you to translate coordinate di↵erences into
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Fig. 1: A row of houses, numbered with in-
tegers

To begin with, the house numbers are
merely markers for each house; in our simple
sketch, they have been associated with the
center of the house, determined along the one-
dimensional street. We can extend these num-
bers to a one-dimensional coordinate system
by subdividing evenly the distance between
one marker and the next; the point half-way
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between houses no. 4 and 5, for instance,
would be the point with coordinate 4.5, and
the point three-quarters of the way between
houses 2 and 3 would have 2.75 as its coordin-
ate.

Coordinates defined in this way perform
two of the three roles we identified for
Cartesian coordinates: they uniquely identify
each point along the street, and they encode
proximity: regarding house no. 3, house no.
5 is further away than no. 4.

What the coordinates do not allow without
additional information is f a direct calculation
of distances. To calculated distances, we need
information about the distances between the
houses – how far away is the mark in front of
no. 1 from that in front of no. 2? How far
away is the no. 2 mark from the no. 3 mark,
and so on? If we know that, say, the no. 4 and
no. 5 marks are 6.8 m apart, then we know
that our point 4.5 is 3.4 m from the mark no.
4, and the same distance from the no. 5 mark.

With this additional information, we can
use our coordinates to compute distances
between points along the street – as long as
we have that additional input, the informa-
tion about how far the houses are apart. This
additional information is our first example of
a metric: a set of information that allows you
to translate coordinate di↵erences into dis-
tances. Let us look at a more general, two-
dimensional example.

The metric of a general 2-dimensional
surface

Consider an idealized rocky landscape, with
hills and valleys, perfectly smooth and pol-
ished, without any breaks or sharp edges.
That landscape is the stand-in for a general
two-dimensional surface. Imagine that we
draw a two-dimensional Cartesian coordinate
system onto a su�ciently large rubber sheet.
We do not just draw the axes, but all coordin-
ate lines: the lines corresponding to x = 1,
x = 1.1, x = 1.2 and so on, and correspond-
ing lines for y = 0.5, y = 0.51, and y = 0.52
and many, many more. In reality, we can
only draw a finite grid of lines, of course; in
our thought experiment, we could imagine we
had drawn all the lines. We also label all the
lines, so whenever we see a line on that rubber

sheet, we can identify which line x = const.
or y = const. we are looking at.

Each point on the rubber sheet has a unique
coordinate label. After all, that point will be
situated on exactly one line x = const. and
on one line y = const.; those two lines define
that point’s pair of coordinate values (x, y).

Now imagine that we spread the rubber
sheet across our rocky landscape, making sure
the sheet covers the surface tightly, with no
pockets of air in between, and no wrinkles,
each part of the sheet covering a correspond-
ing part of the landscape. Evidently, there
will be many places where we will need to
stretch the rubber sheet to make sure it fits
the surface snugly. Our coordinate lines will
become general, curved lines on the surface.

Even the distorted rubber sheet is su�cient
to define a coordinate system on our hilly sur-
face. After all, distortion and stretching do
not change the fact that every point of the
surface will have one x coordinate line and
one y coordinate line intersecting at exactly
that point on the rubber sheet. Every point
of the surface has an (x, y) coordinate pair.

When we take a step back to look at our
rubber-sheet-covered landscape, the coordin-
ate lines will in general look wavy and dis-
torted. Figure 2 shows an example of what
we might see, at least for a selected few co-
ordinate lines. For the lines shown, you could
immediately find the point A = (8.3, 5.4) or
the point B = (8.7, 5.7), or any of the nearly
80 additional points lying on the intersection
of the visible coordinate lines in figure 2. If
a finer grid were shown, you could find many
more points; an idealized, infinitesimally fine
grid, including all coordinate lines, would al-
low you to find coordinates for every point in
the region visible in figure 2 by looking at the
coordinate lines intersecting at that particular
point.

One glance at figure 2 will show you that
this is not a Cartesian coordinate system on a
plane surface. The wavy lines are a dead give-
away. (Note, though, that simply by looking
at the lines in this way, you could not tell
whether this was a distorted rubber sheet on
a plane, or on a more complex surface!)



Astronomy from 4 Perspectives 18 Jena 2015

x =
8.1

y = 5.1

x =
8.2

y = 5.2

x =
8.3

y = 5.3

x =
8.4

y = 5.4

x =
8.5

y = 5.5

x =
8.6

y = 5.6

x =
8.7

y = 5.7

x =
8.8

y = 5.8

x =
8.9

y = 5.9

B

A

Figure 2: The rubber sheet coordinate system on our surface, as seen by a birds-eye
observer, showing selected coordinate lines x = const. and y = const.
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Fig. 2: The rubber sheet coordinate system
on our surface, as seen by a birds-eye
observer, showing selected coordinate
lines x = const. and y = const.

But what happens when you zoom in on one
particular point of the surface (and covering
rubber sheet)? There is a more familiar case
of such a zooming-in, namely the infinitesimal
straightness that emerges when you look at a
particular point on a di↵erentiable curve plot-
ted in the usual xy coordinate system: zoom
in su�ciently, and the portion of the curve
you are looking at will increasingly resemble
a straight line. This is the visual motiva-
tion for defining the derivative of that func-
tion, which is closely related to the line you’d
get if you had an infinitely strong zoom, let-
ting you see the infinitesimal neighbourhood
of your chosen point.

The properties of our rocky surface
(smooth, no breaks or sharp edges) and the
procedure that gave us the coordinate lines
(distorting the rubber sheet to fit the surface
snugly) suggests that these lines, too, are dif-
ferentiable. By that criterion, when we zoom
in su�ciently close, we should be able to make
the criss-crossing, general/curved coordinate
lines look more and more like straight line seg-
ments. This suggests that, at suitably high
magnification, the region around each point
should look as shown in figure 3.

In particular, the straight line segments
mesh together just as one would expect in

a plane with Euclidean geometry. Our two-
dimensional version of infinitesimal straight-
ness thus reads: Zoom su�ciently close to a
smooth and possibly curved surface, and the
small (in the limit: infinitesimal) region you
are looking at will be indistinguishable from
a small subset of a Euclidean plane.

We are using this property of curved sur-
faces implicitly whenever we consult a com-
mon road-map – which, after all, maps a small
portion of the surface of a sphere, namely the
globe, onto a flat piece of paper.

Let us focus on the area delineated by the
parallelogram marked in figure 3. If we ap-
proximate the small region in question as a
small subset of a Euclidean plane, then the
coordinate lines on that plane define a co-
ordinate system that is almost, but not quite
Cartesian: the coordinate lines are indeed
straight lines, but the x and y axis are not
orthogonal to each other.

But what happens when you zoom in on one particular point of the surface (and
covering rubber sheet)? There is a more familiar case of such a zooming-in, namely
the infinitesimal straightness that emerges when you look at a particular point on a
di↵erentiable curve plotted in the usual xy coordinate system: zoom in su�ciently,
and the portion of the curve you are looking at will increasingly resemble a straight
line. This is the visual motivation for defining the derivative of that function, which is
closely related to the line you’d get if you had an infinitely strong zoom, letting you
see the infinitesimal neighbourhood of your chosen point.

The properties of our rocky surface (smooth, no breaks or sharp edges) and the
procedure that gave us the coordinate lines (distorting the rubber sheet to fit the sur-
face snugly) suggests that these lines, too, are di↵erentiable. By that criterion, when we
zoom in su�ciently close, we should be able to make the criss-crossing, general/curved
coordinate lines look more and more like straight line segments. This suggests that,
at suitably high magnification, the region around each point should look as shown
in figure 3. In particular, the straight line segments mesh together just as one would
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Figure 3: A small neighbourhood around the point B = (8.7, 5.7) on the smooth surface
in figure 2, su�ciently magnified for the coordinate lines to look like segments of
straight lines. Next, we explore the geometry of the region inside the parallelogram.

expect in a plane with Euclidean geometry. Our two-dimensional version of infinites-
imal straightness thus reads: Zoom su�ciently close to a smooth and possibly curved
surface, and the small (in the limit: infinitesimal) region you are looking at will be
indistinguishable from a small subset of a Euclidean plane.

We are using this property of curved surfaces implicitly whenever we consult a
common road-map – which, after all, maps a small portion of the surface of a sphere,
namely the globe, onto a flat piece of paper.

Let us focus on the area delineated by the parallelogram marked in figure 3. If we
approximate the small region in question as a small subset of a Euclidean plane, then
the coordinate lines on that plane define a coordinate system that is almost, but not
quite Cartesian: the coordinate lines are indeed straight lines, but the x and y axis are
not orthogonal to each other.
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Fig. 3: A small neighbourhood around the
point B = (8.7, 5.7) on the smooth sur-
face in figure 2, su�ciently magnified
for the coordinate lines to look like seg-
ments of straight lines.

This need not keep us from calculating the
distance of any point P in the parallelogram
from the basepoint B = (8.7, 5.7), though.
The geometry of the situation can be seen
in figure 4. More generally, let us place our
basepoint at B = (x, y). What do we need to
know in order to determine distances? First
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of all, just as in the example with the house
numbers, we need a scale factor. Consider a
small shift dx in the x coordinate, moving us
from P1 = (x, y) to P2 = (x + dx, y). Define
the scale factor a linking the coordinate dis-
tance dx and the distance P1P2 by

P1P2 = a dx. (3)

Analogously, we define a scale factor b for
small shifts in the y direction. At B, the
angle between the x and y coordinate line is
↵. From the law of cosines, it follows that for
a general coordinate shift (dx, dy), the dis-
tance ds between B = (x, y) and the point
P = (x + dx, y + dy) is given by

ds2 = a2 dx2 + 2 ab cos(↵) dx dy + b2 dy2

⌘ g11 dx2 + 2g12 dx dy + g22 dy2, (4)

where the expression on the right serves to
define the metric coe�cients g11, g12, and g22.
Such an expression linking infinitesimal dis-
tances ds and coordinate shifts dx, dy, . . . is
called a line element.

Just as in Pythagoras’ theorem, this expres-
sion is second order in the coordinate shifts.
The information linking coordinate shifts and
distances is encoded in the metric coe�cients.
Taken together, the coe�cients form the met-
ric at that particular point. At other loca-
tions on the surface, there is an analogous
formula linking coordinate shifts and infinites-
imal distances; in general, the metric coe�-
cients g11, g12, and g22 will take on other val-
ues than at our original basepoint B as we
move to di↵erent locations. In other words:
the metric coe�cients are functions of posi-
tion, g11(x, y), g12(x, y), and g22(x, y), and so
is the metric.

Once we know these functions, we can an-
swer all questions about the inner geometry
on the surface. In short, the inner geometry
deals with all questions that a hypothetical
two-dimensional being that is living on the
surface can ask about curves in the surface,
the geometric objects that can be constructed
from such curves, and the various distances
and angles involved. The answers, arrived at
using the metric, could each be checked by ap-
propriate measurements taken on the surface.

On the other hand, the metric cannot tell us

anything about the exterior geometry, that is,
the specifics of how the two-dimensional sur-
face is embedded in three-dimensional space.
For a simple example, imagine all the ways
one can embed a two-dimensional sheet of pa-
per in space; the geometry of triangles etc.
on the sheet remains Euclidean even when
the embedding changes. In fact, formulating
geometry in terms of a metric provides the
means to discuss the geometry of curved sur-
faces without the need for such embeddings!

The metric coe�cients introduced here are
the central elements of the general descrip-
tion for the inner geometry of smooth sur-
faces, which was found by Carl Friedrich Gauß
(1777–1855). Bernhard Riemann (1826–1866)
generalized this description to spaces of arbit-
rary dimension.

Figure 3: A small neighbourhood around the point (8.7, 5.7) on the smooth surface in
figure 2, su�ciently magnified for the coordinate lines to look like segments of straight
lines. The parallelogram marks the region whose geometry we will explore in the next
figure.

We are using this property of curved surfaces implicitly whenever we consult a
common road-map – which, after all, maps a small portion of the surface of a sphere,
namely the globe, onto a flat piece of paper.

Let us focus on the area delineated by the parallelogram marked in figure 3. If we
approximate the small region in question as a small subset of a Euclidean plane, then
the coordinate lines on that plane define a coordinate system that is almost, but not
quite Cartesian: the coordinate lines are indeed straight lines, but the x and y axis are
not orthogonal to each other.

This doesn’t keep us from calculating the distance of any point P in the parallel-
ogram from the basepoint B = (8.7, 5.7), though. The geometry of the situation can
be seen in figure 4. More generally, let us place our basepoint at B = (x, y). What

P

B

dx
dy

↵

Figure 4: Parallelogram adjoining the basepoint B = (8.7, 5.7). What is the distance
between B and some point P whose coordinates are shifted against those of B by dx in
the x direction, dy in the y direction?
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Fig. 4: Parallelogram adjoining the basepoint
B. What is the distance between B
and some point P whose coordinates
are shifted against those of B by dx in
the x direction, dy in the y direction?

Spacetime metric

The properties of special relativity can be
written using a metric, as well. At first glance,
the line element looks a bit weird. While it is
written as a square, the line element can be-
come negative! In the usual coordinates of an
inertial system S, using Cartesian coordinates
for space, it can be written as

ds2 = �c2 dt2 + dx2 + dy2 + dz2, (5)

where c is the speed of light in vacuum. All
the usual special-relativistic e↵ects, such as
time dilation and length contraction, can be
derived from this metric, which is known as
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the Minkowski metric.

The starting point for general relativity
is a generalization of the metric (5). The
most general form of the metric will contain
all second-order products of coordinate di↵er-
ences (such as dx·dt or dx·dz, among others),
and the metric coe�cients can be functions of
all the four coordinates.

For our simple analysis of cosmological and
gravitational wave spacetimes, two general
properties of such general spacetime metrics
are su�cient: If we confine ourselves to dt =
0, then the remaining non-zero part of the
metric can be used in direct analogy to what
we did with the metric of our two dimensional
surface to relate spatial coordinate shifts to
spatial distances.1

The second general property is that the
trajectories x(t), y(t), z(t) taken by light al-
ways satisfy ds2 = 0, more specifically: if
dx, dy, dz are the shifts in the spatial coordin-
ate of a photon as the coordinate time interval
dt passes, the line element ds2 for this particu-
lar set of coordinate shifts dx, dy, dz, dt must
vanish. It is straightforward to see that, in
the case of (5) in special relativity, this cor-
responds to light moving with the usual speed
of light c.2

In general relativity, the geometry of space-
time (encoded by the functions that specify
the metric coe�cients) is determined by the
Einstein Field Equations (EFE). The EFE
are second order di↵erential equations linking
the first and second derivatives of the metric
coe�cients with the mass, energy, momentum
and pressure of whatever matter is present in
the spacetime in question, which serves as a
source of gravity. 3 A set of matching metric
coe�cients and suitable source terms, linked
by the EFEs, is called a solution of the EFEs.
All models of physical situations in the frame-
work of general relativity are formulated in
terms of suitable solutions.

Using the EFEs, it is possible to calculate in
a systematic manner the deviations from clas-
sical Newtonian gravity which occur in situ-

ations with comparatively weak gravity. New-
tonian gravity itself can be described, in a co-
ordinate system close to that chosen in clas-
sical physics, as a location-dependent coe�-
cient g00 in front of the metric’s dt2 term.

Metrics for an expanding cosmos and for
gravitational waves

The simplest metric for a homogeneous and
isotropic expanding universe, and the met-
ric on which current cosmological models are
based, is

ds2 = �c2 dt2+a(t)2
⇥
dx2 + dy2 + dz2

⇤
. (6)

In general relativity, as more generally in sci-
entific modelling, choosing suitable coordin-
ates is very important. In the case of (6),
the coordinates have been chosen adapted to
the situation as follows: consider idealized
galaxies that follow cosmic expansion without
any additional velocity components (“pecu-
liar velocity” due to motion within galaxy
clusters). Such galaxies are said to move with
the Hubble flow; in our coordinate system,
they are assigned constant coordinate values
x, y, z. (This is known as using comoving co-
ordinates – the coordinate system moves along
with the galaxies.) The time coordinate t is
measured by clocks moving alongside galax-
ies in the Hubble flow. These clocks are syn-
chronized in exactly the right way that, for
any fixed time t = const., the local average
density of the universe is the same at each
location. (In other words: our notion of sim-
ultaneity is adapted to the homogeneity of the
universe.)

This is the simplest case of Friedmann-
Lemâıtre-Robertson-Walker universe (FLRW
universe), namely an expanding universe with
Euclidean spatial geometry (in the lingo of
FLRW solutions, k = 0; the other possibilities
for FLRW universes are hyperbolic geometry
k = �1 and spherical geometry k = +1).

The function a(t) is called the cosmic scale
factor. Its role can be read o↵ directly from

1There is a caveat when it comes to interpreting these spatial distances; in general, the interpretation depends
on the meaning of the time coordinate that was chosen – in line with the fact that already plays an important
role in special relativity, namely that measuring distances depends on one’s notion of simultaneity.

2For the easiest way to see this, restrict yourself to light propagation in the x direction only. Then ds2 = 0
translates to |dx/dt| = c.

3An elementary treatment can be found in [1]
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the metric (6): Assume that, at a fixed mo-
ment in time t, we determine the distance
between two galaxies A and B. Without loss
of generality we can assume the y and z co-
ordinates of these two galaxies to be equal
(since we can always rotate our coordinate
system so that two given galaxies A and B
are separated in the x direction only). We
obtain the distance between A and B by in-
tegrating the (infinitesimally) small distance
element ds along the straight line joining A
and B, namely

d
AB

(t) =

BZ

A

ds = a(t)

xBZ

xA

|dx|

= a(t) · |x
B

� x
A

|. (7)

Evidently, all distances between arbitrary
pairs of galaxies in the Hubble flow change
over time are proportional to the cosmic scale
factor. For any two galaxies A and B, and
any two cosmic times t1 and t2, we have

d
AB

(t1) =
a(t1)

a(t2)
d
AB

(t2). (8)

This is the formula encoding what is meant by
cosmic expansion: distances between distant
galaxies changing proportionally to the same
cosmic scale factor.

Next, we turn to gravitational waves:
minute, propagating disturbances of space-
time geometry, travelling at the speed of light.
Gravitational waves one can hope to detect
are typically produced by the fast, accelerated
movement of compact objects such as black
holes or neutron stars.

The simplest metric for a gravitational wave
in empty space can be written as

ds2 = �c2 dt2 + [1 + h(t � z/c)]dx2

+[1 � h(t � z/c)]dy2 + dz2. (9)

In the simplest case, the gravitational wave
strain is a sine function

h(t) = A · sin(!t), (10)

possibly with an extra phase shift that is not
included here, where the amplitude A is ex-
tremely small for realistic gravitational wave
signals, A ⇠ 10�21. Similar to the cosmolo-

gical case, the coordinates have been chosen
to ensure each set of fixed spatial coordinates
(x, y, z) can be associated with a particle in
free fall, which will keep its position in the
coordinate systems even when a gravitational
wave passes. (In other words, trajectories
with x = const., y = const. z = const. are
geodesics, that is: possible trajectories for un-
constrained particles in free fall.) In the ab-
sence of a gravitational wave, h = 0, the co-
ordinates reduce to the standard coordinates
of special relativity.

The gravitational wave is propagating at
the speed of light c; in the metric (9), propaga-
tion is in the positive z direction. The metric
is a special case of a plane-fronted wave with
parallel propagation, “pp wave” for short, de-
rived from a linear approximation that treats
gravitational waves as small deviations from
an otherwise flat spacetime. The specific form
given in (9) corresponds to the transversal
traceless gauge, “TT gauge” for short, and
can be found in many university-level text
books on general relativity.

The action of the gravitational wave (9) can
be seen most readily by examining a group of
particles floating freely in the xy plane. Fig-
ure 5 shows such a group of free particles,
arranged to form a circle, at di↵erent phase
values for the gravitational wave. The page
corresponds to the xy plane, with the grav-
itational wave propagating from the back to-
wards the observer. The pattern of stretch-
ing and shrinking, with maximal stretching in
the horizontal direction while there is max-
imal shrinking in the vertical direction, and
vice versa, is characteristic for gravitational
waves, a direct consequence of what is meant
when the waves are called quadrupole distor-
tions. The direction of motion is perpendicu-
lar to the distortions, in other words: gravit-
ational waves are transversal.

Similarities and di↵erences

Some similarities between the two metrics
(6) and (9) are immediately obvious. In
both cases, the deviations from flat spacetime
(Minkowski metric) is in the spatial part only.
In both cases, there are time-dependent met-
ric coe�cients in front of the terms dx2 and
dy2 that do not depend on x and y.
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Figure 5: Gravitational wave acting on a circle of freely floating particles. Plotted are
the distances relative to a freely floating particle in the center of each image for various
phases of the gravitational wave. The wave is propagating at right angles to the image
plane, e.g. directly towards the viewer. The amplitude has been exaggerated by many
orders of magnitude to render the e↵ects of the wave visible.
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Fig. 5: Gravitational wave acting on a circle of freely floating particles. Plotted are the distances
relative to a freely floating particle in the center of each image for various phases of the
gravitational wave. The wave is propagating at right angles to the image plane, e.g.
directly towards the viewer. The amplitude has been exaggerated by many orders of
magnitude to render the e↵ects of the wave visible.

Since the only term involving dt is, in both
cases, �c2dt2, the time coordinate is the time
as shown by blocks that are at rest at constant
coordinate locations. Also in both cases, con-
stant coordinate locations are a form of free
fall, in other words: In the absence of external
non-gravitational forces, particles at rest in
the spatial coordinates, floating in space, will
remain floating at those same coordinate val-
ues of their own accord.

On the other hand, there is a fundamental
di↵erence in that in cosmic expansion, all
directions of space are on an equal footing,
whereas a gravitational wave only a↵ects the
two spatial directions orthogonal to its direc-
tion of propagation.

In the xy plane, at constant z and with
dz = 0, we can write both metrics in the form

ds2 = �c2 dt2 + a
x

(t)2dx2 + a
y

(t)2dy2. (11)

From this generalized metric, we can derive
some common e↵ects that are present both
in both spacetimes: in an expanding universe
and as a gravitational wave passes by.

Frequency shift for light

Consider light propagating in the xy plane
with the general metric (11). More spe-
cifically, let us confine our attention to light
propagating in one of the coordinate direc-
tions only, say: the x direction. Using sym-
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metry considerations, obvious for the cosmo-
logical case and somewhat more subtle in the
case of the gravitational wave, it can be shown
that this is no loss of generality.

The part of our metric dealing with the x
and t directions only is

ds2 = �c2 dt2 + a
x

(t)2dx2. (12)

Let x(t) describe the propagation of light
along the x direction. Per definition, light
propagation means ds2 = 0, and we obtain

c
dt

a
x

(t)
= ±dx. (13)

The two di↵erent signs correspond to the two
possible propagation directions of light, in the
positive or negative x direction.

Integrating up, we find that for light emit-
ted at the location x

e

at the time t
e

and re-
ceived at the location x

r

< x
e

at the time t
r

,
we have

c

trZ

te

dt

a
x

(t)
= x

e

� x
r

. (14)

Independent of the specific form of a
x

(t), we
can derive the following: Consider two pulses
of light emitted at the same location x

e

at
times t

e

and t
e

+ �t
e

, which arrive at the loc-
ation x

r

< x
e

at times t
r

and t
r

+ �t
r

. Ac-
cording to (14), we have

0 =

tr+�trZ

te+�te

dt

a
x

(t)
�

trZ

te

dt

a
x

(t)

=

2

4
tr+�trZ

tr

+

trZ

te

�
te+�teZ

te

�
trZ

te

3

5 dt

a
x

(t)

=

2

4
tr+�trZ

tr

�
te+�teZ

te

3

5 dt

a
x

(t)

⇡ �t
e

a
x

(t
e

)
� �t

r

a
x

(t
r

)
. (15)

The argument remains valid when we consider
not light pulses, but consecutive wave crests of
light waves. In this case, the �

t

correspond to
the oscillation period of the light, and are thus
proportional to the light wave’s wavelength �.

Thus, (15) entails

�
r

�
e

=
a
x

(t
r

)

a
x

(t
e

)
. (16)

In an expanding universe, the scale factor has
grown between the time t

a

and the later time
t
r

, so a
x

(t
r

) > a
x

(t
e

). Thus, for distant galax-
ies whose light reaches us at the present time,
the e↵ect derived here corresponds to a sys-
tematic redshift known as the cosmic redshift.

On the other hand, light propagating at
right angles to the direction of a gravitational
wave is subject to a series of periodic red- and
blue shifts that arise from the metric in ex-
actly the same manner as the cosmic redshift.

Bound systems

Next, consider a bound system in a spacetime
described by the metric (11). This is more
complicated than simply tracing the move-
ment of particles in free fall (which amounts
to finding the spacetime’s straightest possible
lines, or geodesics), as we need to take into ac-
count both gravitational acceleration and the
non-gravitational forces responsible for keep-
ing the system bound (or not).

The most straightforward way of obtaining
at least an approximate description of what
happens to a bound system is based on Ein-
stein’s principle of equivalence, one of the fun-
damental principles of general relativity. The
equivalence principle is the spacetime ana-
logue of our zooming-in on an infinitesimal re-
gion of our curved surface discussed on page
17 and the following. In that case, a su�-
ciently high zoom factor made the region un-
der scrutiny look indistinguishable from a sub-
set of a Euclidean space. In fact, by a change
of coordinates, we could have replaced the
non-orthogonal coordinate system in figure 4
by a proper orthogonal Cartesian system —
at least locally. The equivalence principle ap-
plies the same zoom-in principle to a general
spacetime: At least locally, in the infinitesimal
neighbourhood of any event, spacetime is in-
distinguishable from the flat spacetime of spe-
cial relativity. By a suitable coordinate trans-
formation, we can make that infinitesimal re-
gion look like flat spacetime in the usual co-
ordinates, distances and light propagation de-
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scribed by the Minkowski metric (5). There
is a simple physical interpretation for the ori-
gin of such a locally Minkowskian system: the
origin is the location of an observer in free fall.

Let us choose just such a system; in fact, we
can keep the origin to be the same as in our
earlier version of the metric (11), given that
the origin and any other fixed coordinate loca-
tion correspond to the trajectories of particles
in free fall. In this system, we will consider the
non-relativistic limit (applicable to particles
whose velocities are slow compared to c) and
examine the consequences for a bound system
described with the help of Newtonian phys-
ics.4

For simplicity, we will again focus on one
direction of space only, choosing once more
the x direction, and the restricted metric (12).
One simple change is su�cient to make this
metric look like that of special relativity at
least locally: we introduce the new spatial co-
ordinate x̄ = a

x

(t) · x, whose coordinate dif-
ferences amount to spatial distances along the
x axis, just as in the usual classical Cartesian
coordinate system. Direct calculation shows
that, for a free particle with x = const., we
have

¨̄x =
ä
x

(t)

a
x

(t)
· x̄. (17)

Through the lens of classical physics, this is
an inertial acceleration a↵ecting all particles
equally. In systems with this kind of inertial
acceleration, Newton’s second law of mechan-
ics takes on the modified form

m


¨̄x � ä

x

(t)

a
x

(t)
· x̄

�
= F

x

. (18)

In the case of a gravitational wave with the
a
x

(t) defined in (9), and neglecting higher-
order terms in A, this equation can be written
as

m


¨̄x +

A!2

2
cos(![t � z/c]) · x̄

�
= F

x

. (19)

The simplest case is for the non-gravitational
force F

x

to follow Hooke’s law. The result

is the simplest model for a so-called resonant
gravitational wave detector: an oscillator with
a forced sinusoidal oscillation. The detectors
built from the 1960s onwards typically were
metal cylinders with a length on the scale of
a few meters, a meter in diameter, and with
high quality factors to ensure that an oscilla-
tion excited by a passing gravitational wave
following (19) would have as large an amp-
litude as possible. These detectors were used
in the first (and unsuccessful) attempts to dir-
ectly detect gravitational waves.

The same formula can be applied to study
the e↵ects of cosmic expansion on a bound
system. Instead of the more general form of
the cosmic scale factor a(t), we consider a
Taylor expansion,

a(t) = a0 + H0(t � t0)

+
1

2
↵ (t � t0)

2 + O(3) (20)

where H0 is known as the Hubble constant.
For a bound system with Coulomb-like cent-
ral force

F
c

= �mC

r̄2
, (21)

and with the realization that our formula (18)
doesn’t just apply to x̄, but equally to a ra-
dial coordinate r̄ measuring the distance from
the origin, we have all the tools to model our
system. As usual, our model includes a term
depending on the angular momentum L = '̇
to make for an e↵ective potential5

¨̄r = ↵ · r̄ � C

r̄2
+

L2

R3
. (22)

Such a system will remain bound as long as

r̄ < r̄
c

=

✓
C

↵

◆1/3

(23)

with a critical radius r̄
c

. Using modern val-
ues for the cosmological parameters, namely
the Hubble constant H0 = 68 km/(s · Mpc) =
2.2 ·10�18 s�1 and the deceleration parameter

4Both this simplified pseudo-Newtonian derivation and a more rigorous analysis can be found in [2] as well as
in [3]

5Cf. [3]
6Based on measurements of the ESA satellite Planck and gravitational lensing data as per Planck Collaboration
[4]
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q0 = �0.54,6 we obtain

↵ = 2.66 · 10�36 s�2. (24)

For a Coulomb system consisting of a proton
and an electron,

C = e2/(4⇡"0me

) = 253.27 m3/s2, (25)

which corresponds to a critical radius r̄
c

=
30,54 AU. Hence, a hydrogen atom is stable
against the influence of (accelerated) cosmic
expansion as long as the electron is less dis-
tant from its proton than Neptune is from the
Sun!

For the gravitational attraction acting on a
planet that orbits the Sun, we have

C = GM� ⇠ 1020 m3/s2, (26)

corresponding to a critical radius of r̄
c

= 390
light-years. A planetary orbit around the Sun
is stable against the current (accelerated) cos-
mic expansion as long as it is smaller than that
very large radius.

One key point concerning these formulae is
that the only influence of cosmic expansion on
bound systems is ä. This shows quite clearly
where interpretations of cosmic expansion as
an “expansion of space” or, even worse, as
“new space being created in the course of the
expansion” fall short. Instead, the situation is
similar to the generic dynamical situation in
physics: dynamical e↵ects do not arise from
first derivatives (in the case of cosmic expan-
sion: the Hubble constant), but from accelera-
tion terms. Objects are not “carried along” by
cosmic expansion; they experience the same
acceleration acting on objects in the Hubble
flow.

Interferometric gravitational wave
detectors

With what we have learned in the preceding
sections, we can also understand the basics
of interferometric gravitational wave detectors
such as those used for the first direct detec-
tion of gravitational waves in mid-September
2015, one-and-a-half weeks after our gravita-
tional wave summer school in Jena.

8 Interferometric gravitational wave detectors
With what we have learned in the preceding sections, we can also understand the basics
of interferometric gravitational wave detectors such as those used for the first direct
detection of gravitational waves in mid-September 2015, one-and-a-half weeks after
our gravitational wave summer school in Jena.
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Figure 6: Simple Michelson interferometer. Interferometric gravitational wave detec-
tors are more complicated versions of this.

The basic structure of such a detector is that of a Michelson interferometer, the
simplest version of which is shown in figure 6: Light from a laser source L propagates
to the beam splitter B. Half of the light continues on to the mirror M1, while the
other is reflected towards the mirror M2. After reflection at the respective mirrors, the
light returns to the beam splitter B, where half of each portion moves on towards the
photodetector PD.

The mirrors M1 and M2 and the beam splitter B are suspended as multiple pendu-
lums to isolate them as far as possible from external disturbances. When it comes to
their reactions to a passing gravitational wave, and their motion back and forth along
the directions of M1–B and M2–B, respectively, this makes them act approximately
like particles in free fall. Interferometric detectors are commonly adjusted so that in
the absence of a gravitational wave, hardly any light escapes towards the photodetec-
tor PD; in other words: there is almost complete destructive interference of the light
moving from M1 and M2 into the direction of PD.

A gravitational wave passing through such a detector – in the simplest case: or-
thogonal to the image plane of figure 6 – makes a twofold di↵erence. For one, the
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Fig. 6: Simple Michelson interferometer. In-
terferometric gravitational wave de-
tectors are more complicated versions
of this.

The basic structure of such a detector
is that of a Michelson interferometer, the
simplest version of which is shown in figure
6: Light from a laser source L propagates to
the beam splitter B. Half of the light continues
on to the mirror M1, while the other is reflec-
ted towards the mirror M2. After reflection
at the respective mirrors, the light returns to
the beam splitter B, where half of each por-
tion moves on towards the photodetector PD.

The mirrors M1 and M2 and the beam split-
ter B are suspended as multiple pendulums
to isolate them as far as possible from ex-
ternal disturbances. When it comes to their
reactions to a passing gravitational wave, and
their motion back and forth along the direc-
tions of M1–B and M2–B, respectively, this
makes them act approximately like particles
in free fall. Interferometric detectors are
commonly adjusted so that in the absence
of a gravitational wave, hardly any light es-
capes towards the photodetector PD; in other
words: there is almost complete destructive
interference of the light moving from M1 and
M2 in the direction of PD.

A gravitational wave passing through such a
detector – in the simplest case: orthogonal to
the image plane of figure 6 – makes a twofold
di↵erence. For one, the distances between the
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beam splitter and the end mirrors will change
in the same way as the distances between
the freely falling particles in figure 5; in the
simplest case, one arm will be stretched while
at the same time the other arm will be shrunk.
Destructive interference cannot be maintained
under such conditions, and light will leak out
towards the photodetector. After all, the time
it takes for wave crests and troughs via M1
and M2 to the detector PD will change as the
relative armlengths change.

An additional e↵ect are the frequency shifts
for light, discussed at page 22 and the fol-
lowing. As arms are stretched and shrunk,
light within the detector is red- and blueshif-
ted accordingly, proportional to the relevant
scale factor. To light waves that have dif-
ferent wave lengths can never have complete
destructive interference; this e↵ect contrib-
utes to the light leaking out at the photo-
detector, as well. When the time light re-
mains inside the detector is short compared
to the oscillation period of the gravitational
wave, as in current ground-based detectors,
the consequences of this e↵ect are much smal-
ler than the change in armlengths. For much
longer light-travel times, such as in the di↵er-
ent varieties of the proposed space-based de-
tector LISA, gravitational-wave-induced fre-
quency shifts become more important.7

Conclusions

The general-relativistic descriptions of cos-
mic expansion and of gravitational waves have
similarities that are helpful in understanding
both phenomena. In their simplest incarna-
tions, both feature a scale factor or multiple
scale factors in front of an otherwise flat spa-

tial metric. In cosmology, this scale factor
governs the changing distances of particles in
the Hubble flow, in the case of gravitational
waves the changing distances between various
components of an interferometric detector.

When non-gravitational forces are present,
it is easiest to change to a pseudo-Newtonian
picture. Here, the second derivatives of the
scale factors cause inertial accelerations that
can be contrasted with the acceleration a
particle experiences through a Coulomb-like
force. In the cosmological case, this helps to
distinguish kinematic and dynamic compon-
ents, showing that particles are not “whisked
along” with the Hubble flow, but given ar-
bitrary initial conditions, react only to the
second-order, dynamical influence of scale-
factor expansion. In the case of gravitational
waves, the corresponding description allows
for an understanding of resonant wave detect-
ors.

A spacetime metric directly governs the
propagation of light, and the scale-factor met-
rics studied here allow for simple calculations
of the wavelength shifts experienced by light.
In the cosmological case, this yields the fam-
ous cosmological redshift. For gravitational
wave, it yields red- and blueshifts that become
important for future large-scale, space-based
detectors.
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