Planet-driven Spiral Waves in Protoplanetary Disks

Jaehan Bae
Carnegie Institution of Washington

Collaborators:
Zhaohuan Zhu, Lee Hartmann, Richard Teague, Ted Bergin, Paola Pinilla, Til Birnstiel
Why would you go back to the past?
Spiral waves have been studied for many decades...

THE EXCITATION AND EVOLUTION OF DENSITY WAVES*

PETER GOLDREICH and SCOTT TREMAINE
California Institute of Technology
Received 1977 August 16; accepted 1978 January 4

THE EXCITATION OF DENSITY WAVES AT THE LINDBLAD AND COROTATION RESONANCES BY AN EXTERNAL POTENTIAL¹

PETER GOLDREICH² and SCOTT TREMAINE³
Received 1978 September 22; accepted 1979 May 2

Six Decades of Spiral Density Wave Theory

Frank H. Shu

ARAA, 2016
In most of the cases, we see multiple spiral arms.
Planet-disk interaction simulations generally show that one planet launches multiple spiral arms.
exoplanets (NASA exoplanet archive, https://exoplanetarchive.ipac.caltech.edu/)

- confirmed exoplanets
- solar system planets
See Figure 1 of Bae, Pinilla & Birnstiel (2018) for the full reference list.

- confirmed exoplanets
- solar system planets

- HL Tau
- MWC 758
- HD 163296
- Elias 2–27
- Elias 2–24
- SAO 206462
- AS 209
- HD 100546
- TW Hya
- AB Aur
- HD 169142
- HD 97048
- DSHARP
- LkCa 15
- RX J1615
- GY 91
- V4046 Sgr
- PDS 70

exoplanets (NASA exoplanet archive, https://exoplanetarchive.ipac.caltech.edu/)
DSHARP data (GW Lup, HD 142666, HD 143006, SR 4) from Zhang et al. (2018).
Outline

1. How does a planet excite multiple spiral arms?

2. What are the implications?

3. Effects of disk thermal properties on the planet-driven spiral arm formation.
How does a planet excite multiple spiral arms?
A simulated J band scattered light image of SAO 206462 based on the model presented in Bae, Zhu & Hartmann (2016).

\[\Phi_p (r, \phi) = -\frac{G M_p}{|\vec{r} - \vec{r}_p|} \]

\[\Phi_p (r, \phi) = \sum_{m=0}^{\infty} \Phi_m (r) \cos (m \phi) \]
The mth Fourier component of the planet’s potential excites m axisymmetric spiral wave modes at the Lindblad resonance (Goldreich & Tremaine 1978a,b,1979).
The propagation of waves depends on their azimuthal wavenumber m such that constructive interference becomes available.
\[\Phi_p(r, \phi) = \sum_{m=0}^{\infty} \Phi_m(r) \cos(m\phi) \]

\[\Phi_p(r, \phi) = -\frac{GM_p}{|\vec{r} - \vec{r}_p|} \]

Bae & Zhu (2018a)
\[\Phi_p(r, \phi) = -\frac{GM_p}{|\vec{r} - \vec{r}_p|} \]

Bae & Zhu (2018a)
• A more massive planet creates stronger spiral shocks (= faster propagation), so the spirals have more opened shapes (Bae & Zhu 2018b; see also Zhu et al. 2015, Fung & Dong 2015).

• This may explain why we need multi-Jupiter-mass planets to reproduce the observed grand-design m=2 spiral arms.
Q: What can a spiral arm do?

A: It transports angular momentum as it shocks the disk gas, opening a gap (Goodman & Rafikov 2001, Rafikov 2002).
Q: What happens when a planet excites multiple spiral arms?

A: The planet can open multiple gaps!
Multiple rings/gaps formed by “one” planet

Bae, Zhu & Hartmann (2017)
Gaps open at the radial locations each spiral arm shocks the disk gas.
A 0.1 Jupiter-mass planet at 99 AU can explain many of the observed continuum gaps and rings in the AS 209 disk (Zhang et al. 2018).

Secondary spiral arm formation prefers a low disk viscosity ($\alpha \lesssim 10^{-3}$ for a Jupiter-mass planet; Bae, Zhu & Hartmann 2017).
Summary

- **One planet can launch more than one spiral** through constructive interference among wave modes having different azimuthal wavenumbers.

- **One planet can create multiple rings and gaps** as its spiral arms shock the disk gas.
 - Number of observed gaps ≠ number of planets
 - We need more direct, localized evidence of planets in order to link disk substructures to planets.