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ABSTRACT

We present a catalogue of photometric and structural properties of 228 nuclear star
clusters (NSCs) in nearby late-type disk galaxies. These new measurements are derived
from a homogeneous analysis of all suitable WFPC2 images in the HST archive. The
luminosity and size of each NSC is derived from an iterative PSF-fitting technique,
which adapts the fitting area to the effective radius (reff) of the NSC, and uses a
WFPC2-specific PSF model tailored to the position of each NSC on the detector.

The luminosities of NSCs are 6 108LV,�, and their integrated optical colours
suggest a wide spread in age. We confirm that most NSCs have sizes similar to Glob-
ular Clusters (GCs), but find that the largest and brightest NSCs occupy the regime
between Ultra Compact Dwarf (UCD) and the nuclei of early-type galaxies in the
size-luminosity plane. The overlap in size, mass, and colour between the different in-
carnations of compact stellar systems provides a support for the notion that at least
some UCDs and the most massive Galactic GCs, may be remnant nuclei of disrupted
disk galaxies.

We find tentative evidence for the NSCs’ reff to be smaller when measured in bluer
filters, and discuss possible implications of this result. We also highlight a few examples
of complex nuclear morphologies, including double nuclei, extended stellar structures,
and nuclear F606W excess from either recent (circum-)nuclear star formation and/or a
weak AGN. Such examples may serve as case studies for ongoing NSC evolution via the
two main suggested mechanisms, namely cluster merging and in situ star formation.
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1 INTRODUCTION

Driven mostly by advances in the spatial resolution of mod-
ern telescopes over the last decades, it has now become
firmly established that nuclear star clusters (NSCs) are an
important morphological component of all types of galaxies
(e.g. ???????).

The connection between the formation and evolution
of NSCs and their host galaxies is a much-discussed topic
of modern astrophysics. In particular, it is an open ques-
tion whether NSCs are an essential ingredient for (or an
intermediate step towards) the formation of a supermassive
black hole (SMBH) in the galaxy nucleus (?). This ques-
tion has been brought into focus by the realization that in
many galaxies, both NSC and SMBH co-exist (??), and that
the few known SMBHs in bulge-less disks all reside in NSCs
(??????).

? E-mail: iskren.georgiev@esa.int; iskren.y.g@gmail.com

The debate on the interplay between NSCs and SMBHs
has been fuelled further by the finding that both types of
”central massive object” (CMO) appear to grow in a way
that is correlated with the growth of their host galaxies.
This correlation has been induced from a number of so-
called scaling relations, which demonstrate the dependence
of CMO mass on various properties of the host galaxy. More
specifically, the mass of both SMBHs (e.g. ???) and NSCs
(e.g. ???) appears to correlate with the mass of the host
galaxy bulge (see ?, for a recent summary of this topic).
The most promising way to investigate the driving mecha-
nism(s) behind these scaling relations is perhaps the study
of late-type disk galaxies which are believed to be the most
”pristine” galaxies which have not (yet) experienced any sig-
nificant build-up of either bulge or CMO, and should there-
fore be well-suited to investigate the early stages of their
(co)evolution.

Understanding the origin and evolution of NSCs may
also shed light on the nature of other massive compact stel-
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lar systems such as Globular Clusters (GCs) and Ultra Com-
pact Dwarf galaxies (UCDs). There are numerous suggested
scenarios for the origin of UCDs, including them being the
extreme end of the GC luminosity function (e.g. ???), the
end product of star cluster merging (e.g ????), the former
nuclei of now dissolved galaxies (e.g. ????), or a combina-
tion of these mechanisms (e.g. ?????).

In particular, expanding the sample of NSCs with well-
characterized sizes and stellar populations is needed to pro-
vide empirical constraints on the “stripped dwarf galaxy”
scenario. The latter has recently received observational
support from an overlap in the properties of UCDs and
dwarf galaxy nuclei, which appear to show similar trends in
their internal velocity dispersions (e.g. ???), size-luminosity
and color-magnitude relations (e.g. ????), their luminosity-
weighted integrated ages and metallicities (e.g. ????), and
dynamical mass-to-light ratios (????) which seem to suggest
unusual stellar mass functions (e.g. ?????) or the presence
of dark matter, most likely in the form of a SMBH (?). All
these observations hint at a close connection between UCDs
(and high-mass GCs) and NSCs, which should be further
tested by comparison to NSC covering as wide a range in
size and mass as possible. Further connections can be pro-
vided from utilizing the high spatial resolution of HST, to
enable the investigation of internal spatial variations of the
stellar populations of such systems (e.g. ??????).

Given that the typical sizes of NSCs fall into the range
between a few pc and a few tens of pc (???), measuring
their effective radii (and accurately separating their light
from the surrounding, often complex, galaxy structure) re-
quires HST resolution in all but the closest galaxies. We
have therefore explored the HST/WFPC2 Legacy archive
to analyse all available exposures of spiral galaxies within
6 40 Mpc, and to derive the structural and photometric
properties of the identified NSCs. Taking advantage of the
accurate instrument knowledge gained following nearly 20
years of WFPC2 observations, our work expands on pre-
vious studies by i) significantly increasing the number of
NSCs with accurate size and flux measurements, ii) improv-
ing the accuracy of previous photometric measurements by
using updated PSF-fitting techniques, and iii) increasing (by
a factor of three) the number of NSCs within an expanded
morphological range of late-type spiral galaxies. This will
allow to study evolutionary trends with the Hubble type of
the host galaxy.

Our work is organized as follows. In Section ?? we de-
scribe the galaxy sample and NSC identification (Sect. ??).
Image processing and combination is discussed in Section ??.
Section ?? details the PSF-fitting techniques to derive the
NSCs’ structural parameters (Sect. ??) and photometry
(Sect. ??). The limitations and uncertainties of the measured
sizes, ellipticities and photometry are discussed in Section ??
and comparison with earlier work is performed in Section ??.
Analysis of the general properties of the NSCs’ size and lumi-
nosity distributions are presented in Sections ?? and ??. We
discuss the implications for the formation and evolution of
massive compact stellar systems (§ ??), the growth of NSCs
(§ ??), and their coexistence with weak AGNs (§ ??). Finally,
we summarize our results in § ??.

2 DATA, REDUCTION, AND ANALYSIS

2.1 Galaxy sample and NSC identification

We searched the HST/WFPC2 archive for all exposures of
galaxies with late Hubble type (t> 3.5) to avoid the most
luminous bulges, an inclination of i6 88◦ to avoid edge-on
galaxies, and distances of 6 40 Mpc, (m −M) . 33 mag to
be able to reliably measure the size of the NSC (see § ??
and Fig. ?? for a more detailed discussion of the resolution
limit). Because the presence of a strong AGN will compli-
cate or even prevent the NSC characterization, we excluded
all strong AGNs from the search, based on their agnclas

parameter in HyperLEDA. However, due to technical issues
with searching and retrieving data from the archive, a few
weak AGNs ended up in our sample, and were processed
through our analysis pipeline. We nevertheless decided to
use the measured NSC properties of these galaxies for a com-
parison to those of quiescent nuclei, and to check whether
the presence of a weak AGN can be deduced from this com-
parison. This is discussed further in Section ??.

We first created a list of all galaxies meeting the above
criteria by searching the HyperLeda database1 (?). We then
used the coordinates of all galaxies returned by HyperLeda
to query the HST archive for available Wide Field and Plan-
etary Camera 2 (WFPC2) imaging within a 2′ search radius.
The search was limited to the well calibrated broad-band fil-
ters F300W , F336W , F380W , F439W , F450W , F555W ,
F606W , F675W , and F814W . For the archive query, we
used the ESAC interface2 to the HST archive. This interface
provides a preview image for each exposure, which we used
for an initial examination in order to reject exposures which
do not contain the galaxy nucleus within the WFPC2 field of
view, or galaxies that are misclassified in either Hubble-type
and/or inclination. The resulting number of galaxies with at
least one suitable WFPC2 exposure in the HST archive is
323. In total, we retrieved data from 47 different GO and
SNAP programs3.

The identification of the galaxy’s nucleus and any NSC
in its center is a relatively straightforward task for early-type
(spheroidal) galaxies. In late-type galaxies, however, this
task is often complicated by ongoing star formation in the
vicinity of the nucleus with its many manifestations: bright
disks/rings, multiple star-forming complexes, bars (often off-
centred), dust lanes, etc. We therefore visually inspected all
downloaded exposures in order to identify those with an un-
ambiguous NSC.

There are 27 galaxies in our sample with a morpho-
logical type of Sm or Irr (i.e. t > 9). It is often difficult to
identify the galaxy nucleus in such galaxies with a perturbed
morphology. For these cases, we identified the brightest star
cluster (which often is the only one) near the photometric
center as the galaxy’s NSC. In order to check whether its
location plausibly defines the galaxy nucleus, we centred a

1 http://leda.univ-lyon1.fr/leda/fullsql.html
2 http://archives.esac.esa.int/hst/
3 HST/WFPC2 data from GO and SNAP programs: 5375, 5381,

5396, 5397, 5411, 5415, 5427, 5446, 5479, 5962, 5999, 6231, 6232,

6355, 6359, 6367, 6423, 6431, 6483, 6713, 6738, 6833, 6888, 7450,
8192, 8199, 8234, 8255, 8597, 8599, 8601, 8632, 8645, 9042, 9124,

9720, 10803, 10829, 10877, 10889, 10905, 11128, 11171, 11227,

11603, 11966, 11987
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Figure 1. WFPC2/WF3 F606W image of ESO271-G005, an ex-

ample for a very late-type (t = 9, Sm) galaxy. The NSC is the

brightest source near the photocenter, as demonstrated by the
general agreement between the outer iso-intensity contour and

the two circular apertures centred on the NSC. The inner and

outer circles around the NSC have radii of 40 and 120 pixels, re-
spectively. The size of the mesh plot in the upper right is 80×80

pixels. The outermost iso-intensity contour marks 10× the back-

ground level. Other bright sources in the image are star forming
regions and foreground stars.

large-diameter circular aperture on it, and compared this
to the outer iso-intensity contours. An example for this is
shown in Figure ??.

During the inspection, 95 galaxies were removed from
the catalogue as unsuitable for reliable NSC fitting. There
are a variety of reasons for the rejection. Some are related
to the exposure quality (e.g. poor signal-to-noise ratio, sat-
uration, or the nucleus falling outside or too close to the
detector edge), while others are intrinsic to the galaxy (e.g.
the genuine absence of any prominent cluster close to the
photocenter, the presence of multiple clusters of comparable
luminosity, or a generally complex structure of the nuclear
region). All of these prevent a reliable fit of the NSC struc-
ture and photometry with our PSF fitting techniques. For
completeness, Table ?? lists these 95 galaxies and their pri-
mary reason for rejection. Some examples for such complex
structures, including double nuclei or extended nuclear disks
are presented in Sect.??).

The final NSC catalogue discussed in this paper there-
fore contains 228 objects. The main properties of the NSC
host galaxy sample collected from the HyperLeda and NED
databases, are summarized in Table ??, and illustrated in
Figure ?? with distributions of distance, luminosity and
morphological type. In Figure ?? we also show the respec-
tive distributions of the rejected galaxy sample, in order to
enable a discussion of the nucleation fraction of late-type
galaxies in the next section.
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Figure 2. Histograms of the main sample properties, i.e. distance
(top), luminosity (middle), and Hubble type (bottom). Separate

histograms are plotted for the NSC catalog proper (hashed), and

for the sample of rejected galaxies (open), as discussed in § ??.

2.2 Nucleation Fraction

For each bin in the lower two panels of Figure ??, the over-
plotted numbers indicate the fraction (in %) of galaxies with
a well-fitted NSC over the total number of galaxies in that
bin. It is important to point out that these numbers can only
serve as lower limits to the true nucleation fraction, given the
variety of possible reasons for the rejection of galaxies. For
example, a galaxy that was rejected because it falls into the
Extended/Complex or Multiple categories may still harbour
a genuine NSC which, however, cannot be identified easily,
or measured reliably.

With these caveats in mind, the numbers in Figure ??
show that on average 80% of all late-type galaxies we re-
trieved from the HST/WFPC2 archive harbour a well de-
fined nuclear star cluster. This confirms the results of earlier
studies (?) which also find that at least 80% of the late-type
disk galaxies (66 t69) harbor an unambiguous NSC. There
is some evidence for a decreasing nucleation fraction in ear-
lier Hubble types (t < 6), as well as in irregular galaxies
(t = 10). While the lower nucleation fraction in Irregulars
suggested by Figure ?? may be affected by small-number
statistics, the numbers are in agreement with those found for
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low-luminosity dIrrs (MV > −17 mag) of about 10% (7/68
galaxies in ?).

2.3 Image processing and combination

All WFPC2 exposures retrieved from the Hubble archive are
processed with the WFPC2 calwp24 instrument pipeline. It
uses the latest calibration reference files to correct for bias,
dark current, detector response variations (flat-fielding), as
well as various electronic artefacts (e.g. reduced 34th row
size and WF4 gain degradation). We then corrected the
downloaded exposures for bad pixels using the latest masks
that were retrieved together with the science data. In ad-
dition, we removed cosmic rays (CRs) hits with lacosmic,
a Laplacian kernel identification algorithm described and
made available as an IRAF5 procedure6 by ?. We carefully
tested the lacosmic parameters7 to remove only CRs while
avoiding the tips of bright stars and/or compact star clus-
ters. A final image combination of multiple exposures per
filter (if available) helped to remove any remaining CRs us-
ing sigma and percentile pixel clipping algorithms.

For each WFPC2 filter, we registered and combined the
individual exposures using a custom-written IRAF wrapper
procedure to combine and efficiently automate individual
steps with IRAF procedures. Using an initial guess from se-
lected stars in the reference image, the code identifies high-
S/N stars present in all exposures, evaluates and applies the
subpixel shifts (with a drizzle re-sampling factor chosen to
be 0.6), applies corrections for field rotation and distortion
(with geomap, geotran), and combines the registered im-
ages (imcombine) after scaling them for exposure time and
correcting for any remaining zero level offsets. The zero lev-
els are estimated from a specified 30 × 30 pixels statistic
section region that is selected to be free of contaminating
sources, defined as a header keyword added during an ear-
lier preparatory step. The achieved accuracy in the image
registration is about 0.08 pixels (RMS) for exposures taken
with a dither pattern, and better for observations obtained
with a non-dithered (CR-split) strategy, which is the case
for the majority of the data. A few long exposures with in-
tegration times (>1000 seconds) and/or dithered exposures
were found to have a fine field rotation of up to (0.08◦) which
was corrected as well.

3 ANALYSIS OF NUCLEAR STAR CLUSTERS

3.1 Measuring NSC sizes

The present-day structure of a compact stellar system bears
witness to its evolutionary past, i.e. the combined effects of
the internal dynamical processes and the gravitational po-
tential to which the system as a whole is subjected. Because

4 http://www.stsci.edu/hst/wfpc2/wfpc2 reproc.html
5 IRAF is distributed by the National Optical Astronomy Obser-
vatories, which are operated by the Association of Universities for

Research in Astronomy, Inc., under cooperative agreement with
the National Science Foundation.
6 http://www.astro.yale.edu/dokkum/lacosmic
7 We find the following main lacosmic parameters to work well in

removing the majority of CRs: sigfrac=0.2, objlim=5, niter=4

of the limited spatial resolution, in observations of extra-
galactic star clusters, it is generally hard, if not impossible,
to measure the shape of the surface brightness profile (and
hence mass density profile) with sufficient accuracy to dis-
tinguish between various predictions and/or models. There-
fore, the light profile of extragalactic clusters is typically
compared to that of the instrument Point Spread Function
(PSF) convolved with an analytical function which is known
to represent well the structure of resolved Galactic globular
clusters (surface-brightness profile, concentration, core, ef-
fective, tidal radii, e.g. ??). Assuming a precise knowledge
of the instrumental PSF, this approach can yield a reliable
measurement of the effective radius reff , i.e. the radius that
contains half the cluster light.

The HST PSF is very well characterized: the TinyTim8

software package allows to create a PSF model corrected for
a multitude of factors that influence the PSF shape such as
the precise HST focus position (a.k.a. breathing), the instru-
ment used, detector chip, position within the chip, filter, the
object’s spectral type, charge transfer effects, etc. (?). All of
these factors are properly accounted for when constructing
the PSF model for each exposure.

Because NSCs in late-type galaxies are known to con-
tain a mix of stellar populations (e.g. ???), we chose an
intermediate-type spectral energy distribution (SED) of an
F8V-type star (V − I = 0.68 mag) for the generation of the
TinyTim PSFs which are then oversampled by a factor of
ten9, and tailored to the NSC position on the respective
WFPC2 detector. As discussed in Sect. ??, the impact of
this particular choice of SED on the derived NSC properties
is small.

To quantitatively compare NSCs in our sample to the
PSF shape, we used the ishape procedure in the baolab
software package10 (?). ishape measures the size of a com-
pact source via an algorithm that minimizes the χ2 differ-
ence between the observed light profile and that of a model
cluster. The latter is generated by convolving the instru-
mental PSF with a choice of analytical models available in
ishape. More specifically, we use various versions of a tidally
truncated isothermal sphere (or King-profiles, ??) with con-
centration indices (rtidal/rcore) of 5, 15, 30, and 100, as well
as power law profiles (EFF, ?) for two indices of 1.5 and
2.5. The ishape model best describing the data (i.e. having
the smallest χ2 residuals) is then used to derive both the
effective radius as well as the flux of the NSC.

For high signal-to-noise data with S/N > 30, ishape
can provide a reliable measurement of reff for intrinsic sizes
as small as 10% of the PSF (?), i.e. 0.2 pixels on the
WFPC2/PC detector. This implies that for a galaxy at
30 Mpc distance, effective radii as small as reff ' 3 pc can
be reliably measured (see discussion in § ??).

To facilitate an automated fitting process of NSCs in
the large and heterogeneous galaxy sample, we developed a
wrapper procedure in the IRAF environment, which ports

8 http://www.stsci.edu/hst/observatory/focus/TinyTim
9 The ten times oversampled PSF is convolved with the charge
diffusion kernel, provided as a separate file by TinyTim, during

the PSF fitting with ishape, which restores the charge diffusion
blurring.
10 http://baolab.astroduo.org
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ishape and all its parameters. The procedure reads the im-
age name and NSC position from an input list created during
the visual identification described in Sec. ??. It reads from
the image header all necessary information such as WFPC2
detector chip, filter, distance to galaxy, etc..

A robust measurement of the NSC sizes (as well as
fluxes) requires that the ishape fitting radius extends to
about three times the object’s FWHM. Our procedure there-
fore performs an iterative adjustment of the ishape fitting
radius. As an initial guess we choose 0.5′′ - corresponding to
10 (5) pixels on the PC (WF) chip. For some nearby galax-
ies, this turned out to be too small an area, and for such
cases the procedure compares and rescales the fitting radius
to correspond to a 30 pc at the distance to the target. We
use the distance modulus of the host galaxy obtained from
the NED database (its median value entry). The choice of
a minimum fitting radius of 0.5′′ also roughly corresponds
to about three times the FWHM of the WFPC2 PSF. This
radius is also used for the calibration of the filter zero points
and transformation calibrations (??), which we later use in
Section ??.

A second ishape pass then adjusts the fitting radius to
about three times the NSC major axis FWHM measured in
the previous iteration. We allowed up to three iterations to
avoid runaway and convergence effects. In practice, nearly
all NSCs were fit with a fitting radius of 0.5′′, and only a few
NSCs in the closest galaxies required a larger fitting radius.

Other free fitting parameters in ishape are the cluster
ellipticity and position angle. We allowed ishape to compute
the reff uncertainty from the correlated free parameters’ un-
certainties. While this makes the computation slower (by
about a factor of three), it provides a more realistic esti-
mate of the uncertainties in the derived reff values (?). For
each galaxy image, our ishape IRAF wrapper procedure fits
subsequently each of the six analytical models, and selects
the model with the lowest reduced χ2 residual. The reff val-
ues listed in Table ?? are then calculated from the geometric
mean value of the FWHM along the semi-minor (ωx) and
semi-major (ωy) axis (

√
ωx × ωy) and converted to reff us-

ing the conversion factors tabulated in the ishape manual.
Finally, the measured reff is calculated in parsecs using the
distance modulus to the galaxy, which is given in Table ??.

In some cases, the NSC light profile is fit equally well by
different models. In these cases, we used a secondary met-
ric to identify the best fitting model. Specifically, we used
the residual (data - model) output images by ishape (see
Fig. ??) to calculate the ratio between the standard devia-
tion in the central 5×5 pixels and that of the sky measured in
an annulus with 3 pixels width outside of the fitting radius.
Essentially, this diagnostic measures the difference between
the residuals and the local noise floor of the image11.

The measured reff values for all NSCs and in all avail-
able filters are listed in Table ??, while Table ?? provides
the ellipticities (1-b/a) and position angles (East of North)
of the best-fitting NSC model. The latter was calculated us-
ing the ishape position angle (measured clockwise from the

11 This statistics quantifies the significance of the residuals to
the noise by comparing variances (∝

√
Nsky × (abs(σresidual −

σsky)/σsky)) is similar to the ? statistics testing for variances

equality.

Figure 3. Two examples for the results and data products:
NGC 3756 (top), a “clean” NSC, and NGC 5300 (bottom), an

NSC with faint circum-nuclear structures. The colour composite

images are from the WFPC2/WF3 filters F450W , F606W , and
F814W . The various inlet images contain gray-scale cut-outs and
surface plots showing the results of the PSF-fitting for each filter.

They all cover twice the ishape fitting radius, and show the best-
fit model, the object data, and the residual images (object-model)

as labelled.

detector y-axis) and the image header keyword ORIENTAT,
which gives the position angle of the detector y-axis on the
sky.

Figure ?? illustrates some examples for the results and
data products of our PSF-fitting pipeline. The top panel
shows the case of NGC 3756, a fairly typical NSC with a
“clean” circum-nuclear morphology, i.e. without significant
residuals after the ishape fitting. The bottom panel, in con-

c© 2014 RAS, MNRAS 000, ??–??
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trast, shows NGC 5300, for which the residual images in
all three filters reveal signs of various faint sources in the
immediate vicinity of the NSC, most likely circum-nuclear
star clusters and/or a small-scale star forming disc. This
demonstrates the advantage of deriving the NSC properties
from PSF-fitting, since other techniques (e.g. aperture pho-
tometry) would be influenced by such nearby contaminating
structures, as discussed further in the next section.

Similar figures for the entire NSC catalogue are avail-
able in the online version of this article. Some example fits
are shown in Fig. ?? in Appendix ??.

3.2 Obtaining NSC photometry

Constraining the stellar population(s) of NSCs requires
spectroscopy, or at least (multi) color information. While
NSC spectroscopy with ground-based telescopes is, in prin-
ciple, possible for nearby targets, it requires a significant
time investment, even on 8m class telescopes (e.g. ???).
The sensitivity and resolution of the HST enables accurate
and efficient multi-wavelength photometry for NSCs. The
only systematic published survey of NSCs in late-type spi-
rals done with HST (?) used only a single filter (F814W ).
This lack of precise multi-band photometry for NSCs for a
large number of disk galaxies is one of the main motivations
for our efforts to extract and analyse all such data available
in the HST/WFPC2 archive.

In general, aperture photometry of nuclear clusters in
spiral galaxies is complicated due to contaminating light
from various sources in their immediate vicinity (cf. Fig. ??).
Under the assumption that the intrinsic light profile of the
NSC is well represented by the best-fitting ishape model, as
described above, the flux contained in the model provides a
more robust estimate of the NSC luminosity. Generally, we
find that the best fit models leave relatively small residuals,
typically . 5% of the NSC flux (see Figure ?? and Fig. ??).

We therefore derive the NSC magnitudes from the flux
contained within the best fit ishape model12. For zeropoint
and CTE correction for each exposure (taking into account
the different detectors, gain settings, source positions and
count levels, and epoch of observation), we use the values
and prescriptions in ?. We note that the majority of the
NSCs, due to distance or smaller intrinsic size, were fit with
an 0.5′′ fitting radius (≈ 3x FWHM), which is identical to
the aperture radius used by ? to calibrate the transforma-
tion to instrumental magnitudes. Therefore, this guarantees
minimal/negligible photometric calibration biases and un-
certainties.

The resulting NSC magnitudes in all available filters are
presented in Table ??. The listed photometric uncertainties
are calculated using a local sky region outside the fitting ra-
dius and the calibration parameters uncertainties are added

12 This step is build in to our IRAF procedure, and takes place
after the selection of the best-fit model. For the input list of im-

ages and NSC coordinates, the procedure creates an ascii table

containing the structural and photometric properties of the best-
fit ishape model (in instrumental and physical units), with one

line per object listing the measurements for all available filters

and detectors.

in quadrature. We note here that these stochastic uncertain-
ties are often small compared to other, systematic, uncer-
tainties which are discussed in Section ??. In some cases, an
NSC has been observed multiple times through the same fil-
ter by different observing programs and on different WFPC2
detector chips. In these cases, we give priority to the highest
S/N observation, and indicate the WFPC2 detector with a
subscript to the listed magnitudes.

To facilitate comparison with ground-based studies, we
also transformed the WFPC2 magnitudes in Table ?? to the
Johnson-Cousins magnitude system, which we give in Ta-
ble ??. For this transformation, we use the ? coefficients
and the measured NSC colour, if available. When there is
no colour information (i.e. for a single WFPC2 filter in the
HST archive or other were saturated), we assume the colour
of a ? SSP model for an age of 5 Gyr and solar metallicity.
While these are reasonable assumptions for NSCs (?), the
Johnson-Cousins magnitudes for NSCs with no measured
colour information should be used with caution.

Because ? does not provide transformation coefficients
to U -band, we adopt those from ? for both F336W and
F300W . For the bluest HST filters, ? finds only small dif-
ferences to the ? calibration. The U -band magnitudes in Ta-
ble ?? should therefore be fairly accurate. Nevertheless, the
U−band magnitudes should also be used with care for any
comparative analysis, and the native WFPC2 magnitudes
should be used instead.

For each galaxy, we retrieved (from NED) the fore-
ground Galactic extinction based on the ? recalibration of
the ? extinction map, and calculated filter-specific values
assuming the ? reddening law with RV = 3.1.

3.3 Uncertainties, limitations, and quality checks

As discussed in Sect. ??, a reliable measurement of reff re-
lies on a well characterized instrument PSF, and on data
with a sufficiently high signal-to-noise ratio (S/N > 30 for
the case of compact star clusters, ?). To better gauge the
reliability of the measured reff for our sample of NSCs, we
show in Figure ?? the measured NSCs’ reff as a function of
distance to the host galaxy. The solid curves indicate the
smallest cluster size, i.e. the smallest measurable difference
from the instrument PSF, that can be reliably measured for
objects with S/N > 30 for given WFPC2 detector. For a
well-sampled PSF, this limit corresponds to 10% of the PSF
width, or 0.2 pixels on the PC chip, as indicated by the lower
curve. Because of the coarser sampling of the WF chips, this
accuracy is difficult to achieve for NSCs observed on these
detectors. For these to be considered as “resolved”, we thus
adopt a conservative limit of 20% of the PSF width (0.2 pix-
els on the WF chip), as indicated by the upper curve. The
symbols for the NSC measurements have been color-coded to
highlight those observations that have marginal S/N (light
blue symbols), and therefore may not reach these resolution
limits.

Figure ?? demonstrates that nearly all NSCs in our
sample fall above their respective curve, i.e. they are well-
resolved and the ishape fits provides a robust measure-
ment of their effective radii. Those NSCs which fall below
the resolution limit of their respective detector and/or have
S/N < 30, are regarded as upper limits, marked accord-
ingly in Table 3, and are not considered for the following
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S/N>30 (see §??). The majority of NSCs fall above the curve for their respective WFPC2 detector, i.e. they are resolved, and their reff

measurements are reliable.

analysis. The remaining 202 NSCs (89% of the sample) are
well-resolved, and their effective radii measurements should
therefore be reliable.

In order to demonstrate that our reff measurements are
indeed robust against differences in the spatial sampling of
the WFPC2 detectors, we compare in Figure ?? the results
obtained for NSCs that have been observed on both the
PC and WF chips, fall above the resolution limit, and have
S/N > 30. This selection strategy is adopted for all plots,
unless indicated otherwise. Unfortunately, there are only
eight NSCs that were observed in the same filter, but on two
different WFPC2 detectors. For these, we plot the difference
in the derived magnitudes (top panel), as well as the ratio of
the two measured reff values against both reff (as measured
on the PC chip, middle panel) and the distance to the host
galaxy (bottom panel). The reff ratios scatter around unity
(with a mean reff of 0.88 and an rms of 0.24), independently
of cluster size or distance. Although low-number statistics
prevents a more quantitative discussion, it is worth noting
that the somewhat smaller reff values on the PC detector in-
dicated by the fit are not unexpected given the lower spatial
resolution of the WFx measurements.

The top panel of Figure ?? shows that the NSC photom-
etry, on the other hand, appears to depend somewhat on the
spatial resolution of the data, in the sense that the NSC is
fainter by about 0.1 mag when observed with the PC chip.
In general, such an effect is quite plausible in the regime
of marginally resolved sources because the central pixel on
the WF chips may already contain flux from circum-nuclear

structure. However, the small number of objects with obser-
vation on both detectors (and the lack of similar information
for other filters) prevents us from a quantitatively reliable
correction across the NSC sample. Instead, we adopt the rms
variation between different observations of the same objects
through the same filter (0.07 mag) as the minimum uncer-
tainty for all NSC photometric measurements. This uncer-
tainty is used to derive the typical errors for the NSC colour
shown in Figures ?? and ??.

In order to check for any dependence of reff on wave-
length, we show in Figure ?? the ratios of reff for all NSCs
observed in both F606W and F814W . While there is no
obvious trend with NSC size (top panel) or galaxy distance
(bottom panel), the average ratio seems to be smaller than
one, i.e. NSCs appear to be slightly larger in F814W than
in F606W . While we will discuss this issue in more detail in
§,??, we point out here that the presence of star formation
in the immediate vicinity of the NSC and the associated Hα
emission will cause the opposite effect, i.e. it will increase
the apparent NSC size measured in the F606W filter, since
for nearby galaxies, the F606W passband includes the Hα
line.

As a case in point, the only outlier in Figure ?? is
NGC 1003, a nearby galaxy with a high S/N NSC. Its
F606W image (obtained with the higher resolution PC1
detector) shows a faint extended structure evident in the
ishape fit residuals shown in Figure ??. It is likely that
this structure is caused by (circum-)nuclear star formation,
and that it is responsible for the much larger reff mea-
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Figure 5. Comparison of NSC measurements obtained with the
same filter, but on different WFPC2 detectors. The three panels

show the luminosity difference (top), and the reff ratios as a func-

tion of cluster size (middle) and distance to the NSC host galaxy
(bottom). The solid lines in the top and bottom panels denote

the error-weighted least square fits to the data, while the gray

bands indicate the standard deviation.

sured in the F606W image. Indeed, ? have observed an Hα
flux of FHα = 1.45 mW/m2 from the central 2′′.5 × 2′′.5
(132× 132 pc) of NGC 1003.

As described in § ??, we assume an intermediate-type
SED when generating the PSF model with TinyTim. In
principle, the choice of the object spectrum impacts the
PSF model for a given filter passband. In order to quan-
tify the maximum error that may be caused by the SED
choice, we derived the effective radius of two NSCs with dif-
ferent colours (one blue, one red) using tinytim PSF mod-
els generated with both a hot (spectral type F) and a cold
(spectral type M) SED. We find that the reff values remain
within the measurement uncertainty (<10% scatter in reff)
regardless of the choice of PSF color. This is in agreement
with previous studies (e.g. ?, see also Sect. ??). On average,
we find that colours can be affected by <0.1 mag (in either
direction) if the shape of the PSF spectrum does not match
that of the NSC. We therefore consider the assumption of
an intermediate-type input spectrum to be an acceptable
compromise.

Lastly, in Figure ?? we examine the robustness of the
derived shape parameters of NSCs (i.e. position angle PA
and ellipticity ε) by comparing their measurements in dif-
ferent filters. The top panel of Fig. ?? shows the value of ε
measured in F606W (for NSCs with ε > 0.06) against the
difference between the PA values measured in the F606W
and F814W filters. There is a rather large scatter in the
PA difference, especially for ellipticities below 0.2, indicat-
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(green symbols), plotted against NSC size (top) and distance to

the host galaxy (bottom).

ing that PA measurements for mostly round NSCs are ex-
pectedly unreliable. We therefore focus our analysis on those
NSCs for which the PA difference is smaller than 20◦, i.e.
the first two bins of the histogram plotted in the second
panel. For these clusters, the ellipticity ratio between the
two filters is plotted in the third panel. Since there are still
many measurements that do not agree well between filters,
we apply another selection by focussing on those that agree
to within 50% between different exposures.

The bottom panel of Figure ?? then compares the PA
of the NSC with the PA of the host galaxy disk. Here, we
show only NSCs meeting the above criteria for a credible
measurement of both PA and ε. This is an important test
because a number of studies (e.g. ??) have suggested that
a general alignment between NSC and host galaxy disk can
be expected if the NSC primarily grows via gas accretion,
rather than the infall of star clusters. However, it is evident
from the bottom panel of Figure ?? that there is no general
alignment between NSC and host galaxy disk. However, this
observation does not imply that gas accretion is ruled out.
There are known galaxies for which the NSC is well aligned
with the disk, mostly in edge-on spirals (?), NGC 4244 (?),
in the Milky Way (?) or NGC 4449 (see § ??). Our result
merely suggest that this is not universally the case. It is
possible that the initial information about orientation align-
ment may be erased for a more dynamically evolved NSCs
due to internal dynamical evolution, which operates on a
cluster relaxation time scale. Projection effects and NSC tri-
axiality may be another factor at play.

3.4 Comparison to previous studies

In order to further gauge the reliability of our measurements,
we compare in Figure ?? the NSC sizes and magnitudes mea-
sured in this work with those of 39 NSCs in ? that were de-
rived using the same WFPC2 data. The top panel shows the
ratio between the two NSC radius measurements, while the
bottom panel shows the difference in their measured mag-
nitudes. All measurements are compared in arcseconds and
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Figure 7. NGC 1003 profile fitting maps in all three WFPC2
filters, showing the excess flux and structure visible in F606W .

Each panel shows image, surface and contour plot of the best-fit

model (left), the object (right) and the residual (data - model,
bottom left).

apparent magnitudes, respectively, in order to avoid differ-
ences due to adopted distances and Galactic reddening val-
ues between the two studies.

The comparison reveals that, on average, the newly
measured radii are smaller by about 35% than those in ?
(Fig. ??, bottom panel). Part of this difference can be ex-
plained by the improved PSF fitting technique used in this
work, which allows for non-spherical NSC shapes. For exam-
ple, an NSC ellipticity of ε ' 0.2 would yield an reff value
that is smaller by 10% when using the geometric mean in-
stead of the semi-major axis value, as adopted by ?. On the
other hand, only very few NSCs in our sample have elliptic-
ities above ε > 0.2 (see Figure ??, top panel).

The remainder of the systematic difference is likely ex-
plained by the fact that the present work adapts the fitting
radius to the object FWHM. This additional step makes it
less likely that the fit is performed on a too large area which
may include circum-nuclear structures, and therefore avoids
a bias towards larger NSC sizes. We verified this on a few im-
ages by enforcing a stepwise increase of the fitting radius, i.e.
from 5 pixels to 11 pixels, and found that the measured reff

can easily increase by 10% if the fitting radius is too large.
Other differences to the work of ? that may contribute to
the differences include the use of improved software versions
of both the TinyTim code for generating the WFPC2 PSF
models and the ishape code itself. We conclude that the
systematically smaller NSC sizes reported here can be ex-

d)

NSC:  ε > 0.06,  0.5 < εratio < 1.5  & ∆PA < 20°

 0  10  20  30  40  50  60  70  80  90  100
∆PA (galaxy - NSC) [deg]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

G
al

ax
y
 i

n
cl

u
n
at

io
n
 a

n
g
le

 [
d
eg

]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
NSC ellipticity

 10

 0  10  20  30  40  50  60  70  80  90  100

N

d)

∆PA distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

E
ll

ip
ti

ci
ty

, 
ε

∆PA (F606W - F814W) [deg]

a)

∆PA (F606W - F814W) :    PC - PC or WFx - WFx

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

E
ll

ip
ti

ci
ty

, 
ε

∆PA (F606W - F814W) [deg]

a)

PC - WFx

 0

 5

 10

 15

 20

 0  20  40  60  80  100

N

∆PA [deg]

b)

∆PA (F450W - F814W)
∆PA (F606W - F814W)
∆PA (F450W - F606W)

 0

 1

 2

 3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 e
ll

ip
ti

ci
ty

 r
at

io

ellipticity

c)

∆PA(NSC two filter)<20°, PC / PC or WFx / WFx : εF606W / εF814W
εF450W / εF814W
εF450W / εF606W

Figure 8. a) NSC ellipticity (ε, in F606W ) against the differ-

ence of the NSC PA values measured in two different filters,
∆PA(F606W−F814W ), b) Histogram of ∆PA for the indicated

filter pairs, c) ratio of ε values measured in the respective filter
pairs. Only objects in the first two bins of panel b) are plot-

ted. We consider only NSCs with eliipticity ratios between 0.5
and 1.5 (i.e. between the two dotted lines) as reliable. d) differ-
ence between the PAs of NSC (the average of the respective filter
pairs) and the host galaxy disk, plotted against galaxy inclination,

and color-coded by NSC ellipticity. Only objects with trustworthy
measurements of PA and ε are plotted. The histogram in panel
d) shows the respective ∆PA distribution.
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plained by the various improvements in the fitting method,
and that the new reff measurements are more accurate.

As for the photometric comparison (Fig. ??, bottom
panel), the agreement with the earlier work is generally
better. Here, we also include those NSCs that are only
marginally resolved and/or have a low S/N ratio (gray dots).
On average, the newly measured apparent magnitudes are
somewhat brighter (by about 0.2 mag) than those measured
by ?. This difference can easily be explained by recent im-
provements to the WFPC2 calibration, especially the correc-
tion for charge-transfer-efficiency (CTE), which are included
in the ? zeropoints used for this work, but not in the ? cali-
brations used by ?. There are a few sources with rather large
discrepancies of one magnitude or more; these are always
in the direction of the new measurements being brighter.
We attribute these to the improved fitting technique which
avoids fitting errors due to emission from circum-nuclear
structures.

4 RESULTS AND DISCUSSION

In this section, we present the distributions of effective radii,
luminosities, and colours for the full NSC catalogue. We dis-
cuss the properties of NSCs in comparison to those of other
compact stellar systems (GCs, UCDs, and NSCs in early-
type galaxies), and briefly address some proposed scenarios
for their formation. In particular, we highlight in § ?? an
example for each of the two most likely scenarios for the
growth of NSCs, namely cluster merging and in situ star
formation.

4.1 Size Distributions

In § ??, we noticed that NSCs appear slightly smaller when
observed in bluer filters. This is a potentially important re-
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Figure 10. Ratio between reff values measured in two different

filters on the same (red symbols) or on different WFPC2 detectors
(green symbols), plotted against the three most common NSC

colours. Only reff ratios for well-resolved NSCs with S/N > 30

are shown. The error-weighted least-squares fit to the size ratios
are shown with solid (red) line and the rms scatter is indicated

by the horizontal band. The fit statistics are shown in each panel.

sult because it could indicate radial stellar populations vari-
ations within NSCs, and thus merits a more detailed in-
vestigation. To quantify this effect further, we examine in
Figure ?? how the reff measurements in the three most com-
mon filters compare to each other. While the size ratios in
all three filter combinations scatter around unity (dashed
line), without any systematic trend with colour, the average
size ratio is slightly, but nevertheless significantly, smaller
than one, as indicated by the error-weighted least-squares
fits in the three panels of Figure ??.

To test the statistical significance of this result, we use
the Wilcoxon test within the R software package13, which is
superior to other paired difference rank tests because it does
not assume that the data are normally distributed. The test
uses the data median to test whether it is consistent with
the null hypothesis, which in our case is that the median is
identical to the derived fit value. For all three filter combi-
nations, we find that the null hypothesis is true with a high
probability, i.e. the p-values are greater than 0.9 for all three
filter combinations. In contrast, p 6 0.2 for the hypothesis
that the median size ratio is equal to one.

Another illustration of this results is shown in Figure ??
which shows the reff distribution measured in the three most
common WFPC2 filters. The first point to make is that Fig-

13 R is a free software environment for statistical computing. The
R-project is an official part of the Free Software Foundation’s
GNU project. http://www.r-project.org/
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in the lower two panels shows the F606W (F814W ) probability
density estimates, with their peak values listed in the respective

panel.

ure ?? confirms results from previous studies (??) that the
reff distribution peaks around 3 pc, and has a long tail to-
wards larger radii.

In the bottom panel, we plot only those NSCs that
were observed in the same matched filter pairs as those in
Figure ??. To check for systematic differences in NSC size
with filter passband, we perform a non-parametric proba-
bility density estimation on the reff data (within R) with
a kernel window of 1 pc (twice the typical reff uncertainty).
The same bin width is adopted for the histogram representa-
tion. It confirms that on average, the reff distribution peaks
at a slightly smaller value in F606W than in F814W . The
difference is about 7%, consistent with the results of Fig-
ure ??. The trend is confirmed also when comparing to the
F450W distribution, which shows an even smaller average
NSC size, albeit with less statistical significance due to the
smaller sample size.

Note, however, that for the full NSC catalogue (mid-
dle panel), the histogram for F606W appears to peak at a
slightly larger radius than those for F450W and F814W ,
which seems to contradict the above result. This apparent
contradiction is explained by the fact that the full sample
plotted in the middle panel includes many NSCs that are ob-
served only in a single filter. As the top panel of Figure ??
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Figure 12. Size-luminosity relation for the NSC catalogue pre-
sented in this study. Only well-resolved sources with high S/N

are shown, as discussed in § ??. Dashed line shows a fit to the

size luminosity distribution (see eq. ??). With triangles we show
a control subsample of nuclei in active galaxies (see § ??).

illustrates, the NSCs that are observed only in F606W are
on average larger than those observed only in F814.

The reasons for this prominent selection effect are not
immediately obvious. As discussed in §??, the presence of
Hα emission in the immediate vicinity of the NSC can affect
the ishape fits in the F606W filter such that the measured
reff value is larger in this filter. While we cannot easily de-
duce the selection criteria for archival data, it is possible
that galaxies observed only in F606W are more likely to
show Hα emission than those observed only in F814W , thus
explaining their larger average size.

There are a couple of plausible explanations why NSCs
may appear smaller in bluer filters. The first explanation
that warrants consideration is that the smaller NSC sizes in
bluer filters reflect real differences in the shape of the NSC.
One possibility is the presence of a weak AGN, which would
add a blue, unresolved source to the NSC profile, thus mak-
ing it appear more compact at shorter wavelengths. Another
plausible explanation are radial variations in the dominant
stellar population within a given NSC, in the sense that the
young (blue) population is more concentrated than the old
population. This scenario is plausible if NSCs grow from in-
falling gas and experience recurrent in situ star formation.
A conclusive analysis as to what effect is responsible requires
a more detailed case-by-case analysis of some well-resolved
NSCs, which is beyond the scope of this paper.

4.2 Size-luminosity Relation

In Figure ??, we show the size-luminosity distribution of the
NSCs in our sample. The absolute V−band magnitude, MV ,
is derived from the F606W (or F555W ) magnitudes of the
best-fit ishape model as explained in § ??. The inverted tri-
angles mark a small control sample of NSCs harbouring a
weak AGN (see more details in § ??). For these, the mea-
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sured reff should be considered as upper limits, most likely
because unresolved emission from the AGN makes the NSC
profile indistinguishable from a point source.

It is evident from Figure 9 that NSCs follow a size-
luminosity relation. The least squares fit to the data yields
the following relations:

log reff = −2.0± 0.2− 0.25± 0.02 MV (1)

or

reff = 10−3.21±0.3 × L0.625±0.11
V . (2)

The effective radii of NSCs scale with luminosity as a power
law with an exponent of 0.625, which is very similar to that
derived by ? for a sample of UCDs as well as to the one
measured for a sample of dE nuclei by ?. At least in this
context, UCDs and the NSCs in spirals and dE galaxies
appear to share similar evolutionary histories, a topic that
is discussed further in § ??.

The observed scatter in Figure ?? is much larger than
what can be explained by uncertainties in the photometric
transformations (6 ±0.1 mag) and/or distance modulus (6
±0.2 mag) which can only cause variations in reff of 6 ±20%
and MV of 6 ±0.3 mag. This demonstrates that the large
spread in the size-luminosity relation of NSCs is caused by
variations in their M/L ratio, which may be indicative of
differences in their evolutionary stage. For example, passive
ageing alone can already change the V -band magnitude of
an NSC by about a 1.5 mag (between ages of 4 and 14 Gyr).
In addition, the growth of an NSC is affected by a variety of
factors, e.g. the gravitational environment (i.e. the shape of
the host galaxy potential) or the abundance of molecular gas
in the nucleus, both of which will affect the star formation
rate in and around the NSC.

As for the structure of NSCs, only small changes (<
10%) in reff are expected due to their internal dynamical
evolution, because reff is stable over many relaxation times
after the first Gyr, during which stellar mass loss dominates.
Larger changes in reff are expected from external mecha-
nisms such as the infall of other star clusters or in situ star
formation caused by gas accretion onto the NSC.

In almost all galaxies in our sample (95% of the cases),
the light distribution of the NSCs is better described by
a King- than an EFF profile. For more than half of these
(58%), the King profile with the highest concentration in-
dex (King100, i.e. C ≡ rt/rc = 100) provides the lowest χ2

value. Other concentration indices are optimal for smaller
sample fractions as follows: King30 for 22%, King15 for 12%,
and King5 for 8% of NSCs. A comparison of these statistics
to other studies is not easily possible, since ? adopted a fixed
King model with C = 15 for their late-type sample of NSCs,
while ? did not provide the concentration indices of their
best-fit models for their sample of early-type nuclei. The nine
nuclear clusters in the low-mass late-type dwarf galaxy sam-
ple in ? are also better fit with King models that have similar
concentrations, namely C = 100 (40%), 30 (20%), 15 (30%)
and 5 (10%). We emphasize that for a given NSC, the dis-
tinction between models with different concentration indices
may not always be definitive, since the differences in the fit
quality are often small. Nevertheless, the statistics appear
to indicate that generally speaking, the structure of NSCs
is closer to that of UCDs (C = 63 is the median concentra-

tion of 40 UCDs in ?) than to that of a typical Galactic GC
(C = 32 is the median concentration in ?).

4.3 Comparison to other compact stellar systems

Luminosity, mass, and effective radius are fundamental
properties of compact stellar systems that reflect their for-
mation and subsequent dynamical evolution in the nuclear
environment (e.g. ?). A comparison of these quantities be-
tween different stellar systems (e.g. massive GCs, UCDs,
NSCs) thus can provide valuable information on their dy-
namical status and possible evolutionary connection. It has
been proposed that all these different incarnations of mas-
sive, dense, and dynamically hot stellar systems share a com-
mon origin as the remnant nuclei of now defunct galaxies
following their tidal stripping/dissolution. The size measure-
ments of NSCs in our sample show a broad range, from being
unresolved even for some nearby nuclei (cf Fig. ??) to a few
tens of parsecs, a regime that is comparable to the size of
UCDs.

In Figure ?? we compare our measured NSC sizes to
those published in other studies, in particular for early-type
(dE,N) galaxies (?, open squares), and other late-type and
irregular galaxies (??, blue squares). We also plot the reff

data for UCDs (green diamonds) from a number of stud-
ies (????), as well as those of Milky Way GCs (asterisks)
from the 2010 update of the ? catalogue. Some of the most
massive Galactic GCs are explicitly labelled. We also plot
the new size measurements of ? for the UCDs around M 87
which have been confirmed spectroscopically by ?. Note that
? adopt a fixed King30 model to measure the UCD sizes with
ishape.

The dashed line in Figure ?? shows again the best fit
to our NSC sample from Fig. ??, while the dashed-dotted
line marks the fit to the distribution of early-type NSCs and
UCDs obtained by ?, their eq. 6.

It is evident from Figure ?? that NSCs in late-type
galaxies bridge the parameter space between the more com-
pact NSCs in early-type galaxies and the more extended
UCDs over most of the luminosity range covered by these
systems. At a given luminosity, UCDs are about two times
larger than early-type NSCs. As discussed by ?, this can
be understood as the effect of the strong and variable tidal
truncation within the steep core of early-type nuclei, which
is not present for isolated UCDs. This is also supported by
the results of numerical experiments (??) which have shown
that compact nuclear clusters can expand and become UCD-
like systems. More specifically, the recent numerical simula-
tions of (e.g. ?) demonstrate that the tidal stripping of a nu-
cleated early-type dwarf galaxy following a close (6 10 pc)
pericentre passage by a more massive galaxy can form stellar
systems with properties that cover the entire range of ob-
served UCD sizes and luminosities, including the faint and
extended UCDs found in ?.

? also show that in low-mass galaxies with a shallow po-
tential, expansion of a stripped nucleus may not be as pro-
nounced. Nevertheless, the fact that a few late-type NSCs
in our sample overlap with those extended UCDs, suggests
that even without significant expansion they may resem-
ble UCDs after disruption of their host. Similarly, the most
luminous GCs also show significant overlap with NSCs, de-
spite the fact that they likely experienced significant fading
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Figure 13. Comparison of effective radius versus absolute luminosity (MV ) between the NSCs in this study (red circles) and literature
data for NSCs in late-type spiral or irregular galaxies (blue squares), NSCs in early-type hosts (open squares), and UCDs (green

diamonds), as referenced in § ??. The dashed and dash-dotted lines show, respectively, our fit to the NSC in our sample (eq. ??) and the

? fit to UCDs.

due to both passive ageing and mass loss. Taken together
this could be interpreted as support for a scenario in which
UCDs and at least some massive GCs share a common ori-
gin as the former nuclei of now dissolved galaxies which were
destroyed in past encounters with a more massive galaxy.

Such a scenario also offers a natural explanation for the
observed complex/multiple stellar populations in a number
of massive Galactic GCs such as ωCen and M 54. This is
because the location of the NSC in the nucleus of a host
galaxy, i.e. at the bottom of a deep potential well, favours
a number of mechanisms which are likely to result in the
build-up of various generation of stars via mechanisms such
as in situ star formation or the infall and merging of stellar
clusters due to dynamical friction.

4.4 Colours and Stellar Populations

As discussed in § ??, the NSC magnitudes are computed
from the best-fit ishape model. For our analysis, we will
compare the measurements to magnitudes and colours of
single stellar populations (SSPs) as predicted by the 2012

update of the ? models. These models incorporate the lat-
est stellar evolutionary tracks of thermally-pulsating asymp-
totic giant branch stars (TP-AGB) of different masses and
metallicities by ?, which are especially important for clus-
ters with a luminosity weighted age of 0.2 - 2 Gyrs, where
the contribution of TP-AGB stars is expected to be maxi-
mal. We focus the comparison to solar or higher metallici-
ties, because high-resolution spectroscopy of some NSCs in
late-type spirals has shown that they are best described by
slightly subsolar (Z= 0.015) or higher metallicity (?).

In Figure ??, we show the colour-colour diagram for
all NSCs that have suitable data in the three most com-
mon WFPC2 filters, i.e. F450W,F606W and F814W . Most
NSCs fall close to the SSP models, which is a confirmation
for the homogeneity and quality of our photometric mea-
surements. It is important to note that any variation be-
tween NSCs in the properties of their stellar population(s),
e.g. in age, metallicity, and/or extinction would cause their
position in Figure ?? to be shifted along the SSP tracks.
The uncertainty in the measured colours (indicated in the
lower right), is derived from the maximum photometric er-
ror of 0.07 mag, as discussed in § ??. We therefore believe
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Figure 14. Colour-colour diagram of all NSCs with photometry in the F450W,F606W and F814W filters. Red circles denote NSCs with

reliable size measurements, while the open circles are for those with only upper limits for reff , as discussed in § ??. The magnitudes in all
three filters have been corrected for Galactic foreground reddening. The arrow indicates a dereddening vector of AV = 0.2 mag, and the

error bar indicates the photometric uncertainty as discussed in § ??. Three evolutionary tracks for SSPs (?) with different metallicities

are overplotted.

the displacement of a subset of NSCs above and to the left
of the model tracks cannot fully be explained by uncertain-
ties in the photometric measurements. Instead, their bluer
F606W − F814W colours are most likely indicative for ex-
cess flux in the F606W filter due to Hα emission produced
by ongoing star formation and/or weak AGN activity (e.g.
?).

This seems to be confirmed by the position of
NGC 1042, (blue triangle), the only object in the weak AGN
comparison sample (see § ??) with photometry in all three
bands. It clearly cannot be explained by purely stellar emis-
sion, which suggests that this diagnostic may be useful for
identifying similar cases with weak AGN activity. Deep,
small-aperture spectroscopy or narrow-band imaging with
HST-like spatial resolution is needed to confirm the pres-
ence of AGN signatures in other NSCs that have colors not
matching the model predictions.

In order to further gauge the range of stellar popula-
tion ages covered by NSCs, we show in Figure ?? colour-
magnitude diagrams, together with a number of isochrones
for solar and super-solar metallicity. Along each isochrone,
we indicate the corresponding cluster masses derived from

the M/L-ratios predicted by the SSP model for the respec-
tive age.

It is evident from Figure ?? that the NSCs in our sam-
ple span a wide range in age. About one third of NSCs
have blue colours consistent with luminosity-weighted ages
younger than 1-2 Gyrs, assuming solar metallicity. Given
that a young stellar population (of, e.g., 500 Myr) outshines
an older population (of, e.g., 14 Gyr) by MV ' 2 mag at
the same metallicity and mass, even a small fraction (10%
in mass) of young stars will significantly bias the integrated
luminosity and colours towards an age younger than that of
the older stellar population(s) dominating the cluster mass.
Therefore, it is not possible to use Figure ?? to determine
the time of NSC formation, i.e. the age of the oldest stellar
population within each NSC.

Nevertheless, it is evident that recent star formation
is ubiquitous in the nuclei of late-type spiral galaxies. This
result is in agreement with previous spectroscopic studies of
smaller NSC samples (e.g. ??).
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Active nuc

Figure 15. Colour-magnitude diagrams for NSCs observed in the
three most frequently used WFPC2 filters. All three colours are
plotted against absolute magnitude. The measurements are com-
pared to solar metallicity isochrones (solid blue lines), crosses and
diamonds along the isochrones indicate the stellar masses corre-

sponding to the respective luminosity, according to the ? SSP

model M/Ls. Solid (red) circles denote NSCs with reliable size
measurements, while open circles are for NSCs with upper reff , as

discussed in § ??. All magnitudes have been corrected for Galactic
foreground reddening. The arrow indicates a dereddening vector
of AV = 0.2 mag, and the error bar indicates the maximum pho-

tometric uncertainty (cf. § ??).

Figure 16. An example of a double nucleus in NGC 4654.

The colour composite image is constructed from exposures in

the F450W and F814W WFPC2/WF3 filters. The size of the
nuclear region highlighted in the surface and contour plots is

3′′ × 3′′ = 234× 234 pc. The separation between the two sources

evident in the bottom contour plot is 7.15 PC pixels = 27.9 pc.

4.5 Double nuclei and nuclear disks

In this section, we comment on those galaxies that were re-
jected from the NSC catalogue for one or more of the reasons
described in § ??. About 15% (47 galaxies) of the candidate
late-type disks have nuclear morphologies that are too com-
plex to derive reliable NSC properties with our automated
methods. While a more detailed analysis of these nuclei is
beyond the scope of this paper, we will highlight a few ex-
amples which illustrate the two main processes suggested
to drive the evolution and growth of an NSC, namely star
cluster merging and in situ star formation triggered by gas
infall into the nucleus.

The formation of an NSC via cluster merging in the
galaxy nucleus (e.g. ?) is a natural consequence of dynamical
friction which can be an efficient mechanism for the orbital
decay of star clusters and their subsequent migration to the
galaxy nucleus (???). Numerical simulations have demon-
strated that this process can form clusters with masses and
structural properties comparable to those of observed NSCs
(e.g. ????), including those in disk galaxies (??).

A prominent example for the presence of two clus-
ters in the galaxy nucleus that are likely to merge within
a few crossing times is presented in Figure ??. It shows
a color-composite image of NGC 4654, together with sur-
face and contour plots of its nuclear region (marked with
a white square). This galaxy is located in the Virgo clus-
ter, at a distance of 16.1 Mpc, and has a luminosity of
MV = −20.1 mag, comparable to the Milky Way. It is a late-
type spiral (t = 5.6, SBc) with an inclination of i = 60◦. The
projected separation between the two clusters is 7.15 pixels
on the PC detector, i.e. 0.36′′ or 27.9 pc. This separation
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is about 10 times larger than the typical reff of an NSC (cf
Fig. ??).

The physical proximity of the two clusters prevents an
accurate ishape fit to their structure and luminosity with
the automated approach used for the current study, which
is why this and other similar cases have been excluded from
the NSC catalogue presented here. Nevertheless, we have
performed simple aperture photometry within a two pixel
radius which shows that the relative luminosities of the two
clusters vary strongly between the different filters, suggest-
ing that they have stellar populations of rather different
ages.

More specifically, both clusters have about the same lu-
minosity in the F606W image, with the Eastern cluster be-
ing brighter by about 0.1 mag. However, the Eastern cluster
is by far the brighter of the two in the F450W exposure,
yet it is actually fainter in F814W . The blue colour of the
Eastern cluster suggests that it is likely dominated by young
stars with ages less than a few hundred Myrs. Comparison
to SSP models implies that it is at least an order of magni-
tude less massive than its Western counterpart, which has a
mass of about 106M�.

Assuming that the two clusters are gravitationally
bound to each other, we can estimate roughly their kine-
matics using the measured separation and their approxi-
mate masses. The measured separation between the two
clusters of r = 28 pc implies an orbital period of P =
9.3×107 a3/2 (m1+m2)1/2 ' 50 Myr, where a = r/2 ' 14 pc
and m1+m2 = 1.16M� are the orbital semi-major axis in pc
and the sum of the cluster masses, respectively. This should
be compared to the Roche radius for a binary system,
RR = a ( 0.38 + 0.2 log(m1/m2) )1/2 = 11.4 pc, (??). Since
the projected cluster separation is comparable to the cal-
culated Roche radius, numerical simulations predict that
within few orbital periods equal mass binary clusters would
merge (?). It is therefore very likely that these two clusters
in the nucleus of NGC 4654 will merge within 0.5 Gyr. Note,
however, that some studies have indicated that an apparent
double nucleus can be supported in a dynamically stable
configuration over a long time in the presence of a SMBH,
e.g. in M31 (?), NGC 4486B (?), and VCC 128 (?).

The assumption that both clusters are gravitationally
bound can, in principle, be tested by comparing their orbital
velocity to a measurement of the velocity dispersion of the
system, i.e. within an aperture of < 1′′. If both clusters
indeed form a bound pair, their orbital velocity would be
V '

√
Gm1/r = 12.4 km/s, for an assumed circular orbit,

and an NSC mass of m1 = 106M�.

Another viable channel for NSC formation is NSC
growth via in situ star formation triggered by gas accretion,
as proposed by (e.g. ????). This process is especially viable
in spiral galaxies, which normally harbour large amounts of
molecular gas that can be funneled towards the nucleus by
a number of dynamical processes (?).

To demonstrate the importance of this mechanism in
present-day galaxies, we present an example of a circum-
nuclear disk in Figure ?? which shows a colour-composite
image of NGC 4449, a nearby, isolated, barred Magellanic-
type irregular galaxy (IBm, t = 9.8) whose inclination is
estimated to be i = 63.5◦. The contour plot shows a narrow,
elongated emission region that is about 14 pc long by less
than 2 pc wide.

Figure 17. An example of a nuclear disk in NGC 4449. The colour
composite image from the WFPC2/PC detector in the F555W

and F814W filters. The size of the inlays is 3′′ × 3′′ = 60.8 ×
60.8 pc. In the bottom contour plot, we also show the scale size
of the nuclear disk.

Earlier spectroscopic studies of the nucleus of NGC 4449
have found a number of emission lines which indicate that
it is the site of ongoing star formation (??). It is there-
fore plausible that this structure is a circum-nuclear disk
which is in the process of forming stars, and that these will
contribute to the growth and rejuvenation of the NSC in
NGC 4449. This disk has the same orientation as the host
galaxy disk (PA = 46.5◦), which is in line with observation
of other young nuclei (e.g. ??).

In summary, these two examples provide evidence that
both of the two proposed NSC growth mechanisms do indeed
occur in the present-day universe. Their relative importance
today depends on the current properties of the host galaxy,
e.g. the size of the available gas reservoir within the galactic
disk or the shape of its gravitational potential which deter-
mines whether massive star clusters that formed elsewhere in
the central region are able to survive long enough to migrate
inwards, and to form an NSC or to merge with a pre-existing
NSC.

4.6 Active nuclei in the sample

Emission from an active Galactic Nucleus (AGN) is likely
to affect its colour and apparent structure. Because it will
appear as an additional point source “on top of” the NSC
proper, AGN emission will make it difficult to measure the
intrinsic size of the NSC. For this reason, we excluded all
strong AGNs when constructing our galaxy sample.

However, because the study of weak AGN in bulge-less
disk galaxies is an important topic in its own right, identi-
fying an efficient method to search for these rare objects (?)
is a potential benefit of our study. In addition, a systematic
comparison of the structural and photometric properties of
NSCs with and without weak AGNs has the potential to
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provide additional constraints on the mechanisms power-
ing such nuclei. For example, the presence of Hα emission
could modify the structure and flux in the F606W filter (cf.
Sect. ??).

For these reasons, we kept the small subsample of weak
active nuclei in our sample (see § ??), in order to compare
their properties to those of quiescent NSCs. More specifi-
cally, the AGN sub-sample consists of the following eight
galaxies, which are classified as a Seyfert and/or H2 class
in the literature: NGC 1042 (?), NGC 4395 (?), NGC 1058,
NGC 1566, NGC 3259, NGC 4639, NGC 4700, NGC 5427 (?).

Suitable HST/WFPC2 images in more than one filter
are available only for NGC 1042 (F450W,F606W,F814W ),
NGC 1058 (F450W and F606W ) and NGC 1566
(F336W,F555W and F814W ). In Figure ??, we show
color composite images of NGC 1042 and NGC 1566.
NGC 1042 is a weak AGN (?) which has an undefined
agnclass parameter in HyperLEDA. NGC 1566 is classified
as a Seyfert 1.5, i.e. it has rather strong emission from Hα
and Hβ.

Not surprisingly, we find that NSCs with an AGN gen-
erally appear more compact than “normal” NSCs at a given
luminosity, as shown in Figure ??. Their optical colours are
expected to be affected by the AGN, such that they de-
part from the predictions of SSP models. As seen from the
colour-colour diagram in Fig. ??, this is indeed the case for
NGC 1042, the only object that we can test this prediction
on. This NSC is clearly bluer than the SSP models which
can not be explained by any plausible mix of age, metallicity
or extinction. In addition, the residual images in Figure ??
show unresolved extra emission in the central few pixels at
the 6-7% level, which most likely stems from the AGN. We
conclude that the combination of non-stellar colours and
point-like residual emission in the ishape fits promises to
be a powerful tool to identify weak AGNs.

5 SUMMARY AND CONCLUSIONS

Understanding the formation and evolution of nuclear star
clusters (NSCs) promises fundamental insight into their re-
lation to other massive compact stellar systems. This is be-
cause systems such as ultra compact dwarf (UCD) galaxies
or massive globular clusters (GCs) harboring multiple stel-
lar populations possibly originate as the former nuclei of
now defunct satellite galaxies. On the other hand, NSCs of-
ten coexist with central black holes at the low-mass end of
the SMBH mass range (around ' 106M�). It is actively de-
bated what the role of NSCs is in the growth of such black
holes and the fuelling of energetically weak “mini-AGNs”.
To address these questions, it is important to provide reli-
able measurements of the stellar populations properties of
NSCs (age, metallicity, mass), as well as of their structural
parameters for as many NSCs as possible, to provide obser-
vational constraints to the growing body of theoretical work
addressing the above topics.

The NSC catalogue presented in this work is the first
step in this direction. It provides the largest and most homo-
geneously measured set of structural and photometric prop-
erties of nuclear star clusters in late-type spiral galaxies,
derived from HST/WFPC2 archival imaging.

We have searched the HST legacy archive for all late-

Figure 18. Two examples for NSCs with a weak AGN: NGC 1042

(top) and the Seyfert 1.5 galaxy NGC 1566 (bottom). The
colour composite image of NGC 1042 is made from WFPC2/WF3

F450W and F606W images, while for NGC 1566, we used the

WFPC2/PC1 F555W and F814W exposures. The ishape fitting
results show unresolved residual emission, indicating the presence

of an additional point source.

type spirals within 40 Mpc (see Sect. ??, Table ??) that were
observed with WFPC2. We have identified 323 such galax-
ies with suitable images of their nuclear region. More than
two thirds (228/323) of these show an unambiguous NSC.
We have used a state-of-the-art customized PSF-fitting tech-
nique to derive robust measurements of their effective radii
and luminosities.

For the PSF-fitting of each NSC, detailed in Section ??,
we employ TinyTim PSF models tailored to the pixel loca-
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tion on the respective WFPC2 detector. We use the ishape
software (?) to perform a χ2 minimisation fitting between
the observed NSC profile and the PSF model convolved with
an analytical model cluster profile. During this step, the fit-
ting radius is iteratively adapted to the size of the NSC,
minimizing the impact of circum-nuclear structures. We use
the best-fit ishape model to derive both the structural pa-
rameters (reff , PA, and ε) and the photometry of each NSC.
For the latter, we use the latest (?) transformations, together
with the measured NSC color, if available (see ??).

The complete catalogue of all measured structural and
photometric properties of the 228 NSCs analysed in the var-
ious WFPC2 filters is provided in the online version of this
paper. Table ?? contains the basic properties of the sample
galaxies. Effective radius measurements for different filters
and best fit analytical profiles are provided in Table ??, while
the ellipticities and position angles of all NSCs are provided
in Table ??. Calibrated and foreground reddening corrected
NSC model magnitudes in the WFPC2 magnitude system
are listed in Table ??, and their magnitudes in the John-
son/Cousins system in Table ??. We caution that the latter
magnitudes should be used with caution, because their ac-
curacies depend on the available colour information for the
respective NSC.

Our main results can be summarized as follows:

• Sizes and structure: we find that the measured sizes
of NSCs in late-type spiral galaxies cover a wide range. Most
NSCs have reff of a few pc, typical for Milky Way GCs. How-
ever, the reff distribution includes NSCs as large as a few
tens of pc, i.e. comparable to some UCDs. There is tenta-
tive evidence for a smaller mean NSC size at bluer wave-
lengths, possibly caused by the presence of a weak AGN
and/or a young stellar population that is more concentrated
than the bulk of the NSC stars. On the other hand, some
NSCs appear to be about 30% larger when observed in the
F606W filter, compared to measurements in other filters.
We discuss that this could be due to Hα line emission from
(circum-)nuclear star formation. The NSCs in our late-type
galaxy sample fall into the size-luminosity parameter space
between early-type nuclei, UCDs, and massive GCs, which
we interpret as support for the formation of these dense stel-
lar systems from remnant nuclei of disrupted satellite galax-
ies (see § ??). The majority of the NSCs in our sample are
best fit with King profiles with a high-concentration index
(C ≡ rt/rc = 100), which makes them structurally similar
to UCDs (see § ??).

• Stellar populations: the colour-colour and colour-
magnitude diagrams (Fig. ?? and ??) show that NSCs span
a wide range in age and/or metallicity of their stellar pop-
ulations. This agrees with previous studies which have sug-
gested that NSCs are likely to experience recurring star for-
mation events and/or accretion of other stellar clusters. A
comparison to SSP models shows that NSCs also span a wide
range in mass, from a few times 104 to a few times 108M�.
Unfortunately, stellar mass estimates from optical photom-
etry alone are rather uncertain due to the strong variation
in M/L as a function of age. As discussed in § ??, a small
contribution from a young (e.g. 0.5 - 1 Gyr) stellar popula-
tion can be as luminous as a (much more massive) older (e.g.
10 Gyr) stellar population, thus strongly biasing the derived
cluster age. Combination of this catalogue with UV- and/or

near-infrared data would provide much more robust mass,
metallicity, and age estimates for NSCs.
• Double nuclei and nuclear disks: We find a num-

ber of galaxies hosting double nuclei, i.e. two star clusters
with comparable luminosity which are separated by only a
few tens of parsecs. We regard these cases as plausible ex-
amples for the ongoing process of clusters merging in the
galaxy nucleus (§ ??). We also find examples for small-scale
circum-nuclear disk (aligned with host galaxy disk), which
we interpret as evidence for NSC growth via gas accretion
(?). A systematic search for such morphological features in
HST images can provide important constraints on each of
the proposed NSC formation channels, and a statistical anal-
ysis of their frequency will be the topic of a follow-up paper.
• Active nuclei: We also analysed a small comparison

sample of weak AGNs. In some of these cases, we find faint
unresolved nuclear emission in the residuals of the best-fit
cluster model which are most likely caused by the AGN. The
only AGN with complete colour information (NGC 1042) de-
viates from SSP model predictions, suggesting that the AGN
emission significantly affects the NSC colour. We therefore
argue that such PSF-fitting techniques can be used to search
for so far undetected nuclear activity, or at least to define
promising target samples for spectroscopic searches for sim-
ilar weak AGNs.
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Table 1. Main properties of the galaxy sample with measured NSC properties.
(All 228 galaxies are listed in the online version of the table).

Galaxy RA DEC m−M E(B − V ) B B − V I R25 ε PA Incl. type t
hh:mm:ss dd:mm:ss mag mag mag mag mag kpc deg deg

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

DDO078 10:26:27.78 67:39:25.1 27.82 0.018 15.8 · · · · · · 1.063 0.00 · · · 0. I 10.

IC4710 18:28:37.95 -66:58:56.1 29.75 0.079 12.51 0.57 11.19 4.494 0.15 · · · 34.9 Sm 8.9
NGC1258 3:14:05.50 -21:46:27.3 32.28 0.022 13.88 · · · 12.35 5.870 0.26 20.5 43.7 SABc 5.7

NGC3319 10:39:09.47 41:41:12.5 30.7 0.013 11.77 0.41 11.46 7.289 0.51 36. 62.7 SBc 5.9

NGC5334 13:52:54.44 -1:06:52.4 32.78 0.041 12.97 · · · 12.19 17.729 0.28 18.2 44.8 Sc 5.2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note. — The values for all columns are taken from HyperLEDA, except for columns 4 and 5, which are taken from NED. More specifically,

the distance modulus m−M in Column 4 is the median value in NED. If the latter is not available, we adopt the redshift-derived distance

modulus, modz, from HyperLEDA.

Table 2. Main properties of the galaxy sample without an identifiable NSC.
(All 95 galaxies are listed in the online version of the table).

Galaxy RA DEC m−M E(B − V ) B B − V I R25 ε PA Incl. type t Comment

hh:mm:ss dd:mm:ss mag mag mag mag mag kpc deg deg
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

ESO257-G017 7:27:33.12 -45:41:04.10 30.26 0.128 16.75 · · · · · · 732 0.17 71.8 37.3 SBm 9. F814W1 NoNSC

ESO269-G037 13:03:33.19 -46:35:12.70 27.63 0.117 16.44 · · · · · · 308 0.58 132.1 90. IAB 10. F606W3 NoNSC F814W3

ESO317-G020 10:23:07.62 -42:14:14.71 32.55 0.096 13.21 · · · 11.7 7289 0.09 · · · 24.9 Sc 4.5 F606W1 Extended/Complex
IC0342 3:46:49.30 68:06:04.99 27.58 0.494 9.67 · · · · · · 9521 0.05 · · · 18.5 SABc 6. F606W1 Saturated F555W1 F675W3

IC1613 1:04:47.78 2:07:03.83 24.31 0.022 10. 0.67 · · · 1926 0.07 · · · 22.9 I 9.9 F814W2 NoNSC F555W2 F439W2

IC4441 14:30:18.00 -43:33:39.63 30.68 0.147 14.96 · · · 13.26 2231 0.53 43.1 65.1 Sc 4.5 F300W1 low-S/N
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note. — Columns (1)-(14) are the same as in Table ??. The last column (15) identifies the reason why the galaxy was unsuitable for an NSC measurement, together with the filter and

(with subscript) the WFPC2 detector of the exposure(s).
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Table 3. Effective radii measurements of nuclear star clusters. (All 228 NSCs are listed in the online version of the table,
together with additional measurements in the filters F300W, F336W, F380W, F675W if available.)

F606W F814W F450W F555W F439W
OBJECT reff Profile S/N reff Profile S/N reff Profile S/N reff Profile S/N reff Profile S/N

pc pc pc pc pc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

DDO078 3.7+0.1
−0.0 K153 323. 3.5+0.0

−0.0 K153 240.2 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
IC4710 · · · · · · · · · 1.0+0.3

−0.0 K1003 138. · · · · · · · · · 0.8+0.0
−0.0 K1003 132.7 0.9+0.0

−0.0 K1003 89.5

NGC1258 <3.3+0.0
−0.1 K1001 29.9 <4.4+1.0

−0.8 K1003 24.4 <6.8+1.2
−6.8 K1003 12.1 · · · · · · · · · · · · · · · · · ·

NGC3319 4.7+0.1
−0.1 K52 94.2 9.4+0.0

−0.0 K54 267.3 · · · · · · · · · 9.1+0.1
−0.0 K54 260.7 · · · · · · · · ·

NGC5334 11.9+0.4
−0.7 K153 68.9 14.5+0.4

−0.6 K153 55.1 <10.7+0.9
−1.1 K153 26.5 9.8+0.4

−0.3 K153 59.6 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note. — For each filter, we list the effective radius, the best-fitting ishape profile, and the signal-to-noise of the respective exposure. The reff is given

in pc, calculated using the distance modulus (m −M) in Column 4 of Table ??. The model profiles are abbreviated as K for King and E for EFF. The
subscripts in the profile column indicate the WFPC2 detector of the measurement.

Table 4. Ellipticities and position angles of the NSCs in our sample. (All 228 NSCs are listed in the online version of the
table, together with measurements in the F300W, F336W, F380W, F675W filters, if available.)

F606W F814W F450W F555W F439W
ID ε PA ε PA ε PA ε PA ε PA

[deg] [deg] [deg] [deg] [deg]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

DDO078 0.09+0.00
−0.00 148.3+2.2

−2.0 0.06+0.00
−0.00 159.9+6.7

−3.9 · · · · · · · · · · · · · · · · · · · · · · · ·
IC4710 · · · · · · 0.24+0.09

−0.08 50.2+0.1
−0.4 · · · · · · 0.24+0.01

−0.02 37.1+2.6
−1.7 · · · · · · 0.3+0.03

−0.02 28.6+5.8
−2.6

NGC1258 0.19+0.01
−0.00 92.3+1.3

−7.0 0.07+0.02
−0.02 119.8+61.9

−73.1 0.42+0.43
−0.21 79.8+17.9

−10.5 · · · · · · · · · · · · · · · · · ·
NGC3319 0.29+0.01

−0.01 83.3+2.6
−7.6 0.08+0.00

−0.00 75.3+2.3
−5.8 · · · · · · 0.04+0.00

−0.00 74.4+10.0
−3.0 · · · · · · · · · · · ·

NGC5334 0.15+0.01
−0.01 145.3+10.2

−9.1 0.12+0.01
−0.01 137.2+8.8

−15.1 0.23+0.04
−0.04 96.1+12.0

−19.0 0.26+0.02
−0.26 21.7+7.2

−4.4 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note. — For each filter, we list the ellipticity and position angle (in degrees measured North-to-East), derived from the best-fitting ishape profile of the
respective exposure, as listed in Table ??.
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Table 5. Nuclear star cluster photometry. (All 228 NSCs available in the online version of the table.)

OBJECT RA DEC F606W0 F814W0 F450W0 F555W0 F675W0 F300W0 F336W0 F380W0 F439W0

hh:mm:ss dd:mm:ss mag mag mag mag mag mag mag mag mag
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

DDO078 10:26:27.14 67:39:10.18 19.18± 0.013 18.44± 0.013 · · · · · · · · · · · · · · · · · · · · ·
IC4710 18:28:40.92 -66:59:09.63 · · · 18.26± 0.013 · · · 19.07± 0.013 · · · · · · · · · · · · 19.55± 0.023

NGC1258 3:14:05.44 -21:46:27.95 21.53± 0.021 20.53± 0.023 22.05± 0.043 · · · · · · · · · · · · · · · · · ·
NGC3319 10:39:10.14 41:41:13.23 18.96± 0.012 18.55± 0.014 · · · 19.26± 0.014 · · · · · · · · · · · · · · ·
NGC5334 13:52:54.68 -1:06:49.68 20.01± 0.013 19.28± 0.023 20.85± 0.023 20.35± 0.023 19.77± 0.023 · · · · · · · · · · · ·

Note. — Columns 1-3 list the name, RA, and DEC of the host galaxy. Columns 4-12 contain the CTE- and Galactic foreground reddening-corrected magnitudes of the NSCs

in the WFPC2 photometric system. The subscripts indicate the detector used for the measurement. The applied Galactic foreground extinction is listed in Table ??.

Table 6. Nuclear star cluster magnitudes in the Johnson/Cousins photometric system.
(All 228 NSCs are available in the online version of the table).

OBJECT V0 I0 B0 R0 U0 VF555W BF439W BF380W UF300W

mag mag mag mag mag mag mag mag mag
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

DDO078 19.4± 0.01 18.28± 0.01 · · · · · · · · · · · · · · · · · · · · ·
IC4710 18.96± 0.01 18.1± 0.01 19.4± 0.02 · · · · · · 18.96 19.4 · · · · · ·
NGC1258 21.92± 0.02 20.36± 0.02 22.0± 0.05 · · · · · · · · · · · · · · · · · ·
NGC3319 19.98± 0.01 18.4± 0.01 · · · · · · · · · 19.15 · · · · · · · · ·
NGC5334 20.23± 0.01 19.08± 0.02 20.8± 0.02 20.69± 0.02 · · · 20.24 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note. — The Johnson/Cousins magnitudes are calculated from the HST/WFPC2 magnitudes as described in § ??. Columns
(2)-(6) contain the magnitudes derived from the filters F606W, F814W, F450W, F675W, or F336W. If those are unavailable,

we adopt measurements from alternative filters listed in columns (7)-(10).
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Côté P., Piatek S., Ferrarese L., et al., 2006, ApJS, 165, 57
Da Rocha C., Mieske S., Georgiev I. Y., et al., 2011, A&A,
525, A86

Dabringhausen J., Kroupa P., Baumgardt H., 2009, MN-
RAS, 394, 1529

Dabringhausen J., Kroupa P., Pflamm-Altenburg J.,
Mieske S., 2012, ApJ, 747, 72

De Lorenzi F., Hartmann M., Debattista V. P., Seth A. C.,
Gerhard O., 2013, MNRAS, 429, 2974

Debattista V. P., Ferreras I., Pasquali A., et al., 2006, ApJ,
651, L97

Dolphin A. E., 2009, PASP, 121, 655
Drinkwater M. J., Gregg M. D., Hilker M., et al., 2003,
Nature, 423, 519

Drinkwater M. J., Jones J. B., Gregg M. D., Phillipps S.,
2000, Publications of the Astronomical Society of Aus-
tralia, 17, 227

Elson R. A. W., Fall S. M., Freeman K. C., 1987, ApJ, 323,
54

Evstigneeva E. A., Drinkwater M. J., Peng C. Y., et al.,
2008, AJ, 136, 461

Fellhauer M., Kroupa P., 2002, MNRAS, 330, 642
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Mieske S., Jordán A., Côté P., et al., 2006, ApJ, 653, 193
Mieske S., Kroupa P., 2008, ApJ, 677, 276
Misgeld I., Mieske S., Hilker M., et al., 2011, A&A, 531,
A4

Moustakas J., Kennicutt R. C., Jr., 2006, ApJS, 164, 81
Neumayer N., Walcher C. J., 2012, Advances in Astronomy,
2012

Neumayer N., Walcher C. J., Andersen D., et al., 2011,
MNRAS, 413, 1875

Norris M. A., Kannappan S. J., 2011, MNRAS, 414, 739
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(a) (b)

Figure A1. Images and surface/contour plots of the 228 NSCs, their best fit models, and fit residuals (data - model). A summary of
the fit statistics is also provided. The full figure is available online.
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