


Why do we care about substructure

Halo Occupation Modeling:
subhaloes host satellite galaxies

Subhaloes cause flux-ratio anomalies and
time-delays in gravitational lensing
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Subhalo Disruption in Bolshoi

Jiang & vdB, 2016

e Tidal Stripping

Disruption « Tidal Heating < Pericentric Passage

Mechanisms Subhalo-Subhalo Encounter

e Numerical overmerging
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Does Stripping cause Disruption?

® As first pointed out by Hayashi+03, instantaneous stripping of outer
layers of NFW halo can leave a remnant with positive binding energy.

® For an isotropic NFW halo, the core has positive binding energy
if reut < roind = 0.77 rs.  (corresponding core mass is ~0.08 M)

® Spontaneous disintegration once rid < reut ?

This assumption is made in several models or subhalo evolution
(e.g., Zentner & Bullock 2003; Taylor & Babul 2004; Klypin et al. 2015)
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Numerical Simulations

Simulate NFW halo orbiting on circular
orbit inside static potential of host halo.

e No impulsive (tidal) heating
e No dynamical friction

Naive Prediction:
all matter outside of tidal radius will
be stripped of over time...
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Numerical Simulations

Simulate NFW halo orbiting on circular
orbit inside static potential of host halo.

N=10°%
Ch=5

Cs=1 O
Mnh=103ms
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rt shrinks dyn. friction 20 30 40 50
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vdBosch+17, in prep. t [Gyr]

~ massloss

\ e Analytical predictions fail to
rt shrinks virialization predict amount of mass stripped
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® Mass loss continues for >50 Gyr
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Towards Numerical Convergence

IBEBEE R

N=1,000,000

lllllllllll
L
lllll llllllllllll

llllll Illlllllll L)
llIlll llllllllllll
lllll lllllli"l 1

lll'lllllll

N=300,000

llll'llllll
l""l' lll1l|llll L)
lllLl'llllIl
Illll'llll )
llllll Illlllllllll
I'l'!' IIIUI"III L)

N=100,000

lllllllll

I'llllllll L)

| A T
T e

]

llllll Illlllllllll
'lllt ll'lll'l'l L

l"'ll"' s

N=30,000

ll'lll llllllllllll
ll'lll Il'll'llll -
41111
lllll'llllll
llllllllll 1

llllll Illlllllllll

o
o
o

vdBosch+17, in prep.

Frank van den Bosch Yale University



What about Tidal (Impulsive) Heating?

e For each subhalo in Bolshoi, compute orbital energy & circularity at accretion.

e Compute tidal heating, AE/Eot, by integrating impulse approximation along subhalo’s
orbit (one period) using detailed model of Gnedin, Hernquist & Ostriker (1999).

e Apply same method to Monte-Carlo realizations of NFW subhalos to compute AE;and E;
for each individual DM particle. Determine foound = f(AE/Ei< 1)

w. AC: f,,=0.72
w/o AC: f, =0.78
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vdBosch+17, in prep. log[AE/lEbI]

Energy input exceeds subhalo binding energy for ~80 percent of all subhalos.
Yet, on average only ~25 percent of subhalo particles become unbound.

Even when AE/Eiwt = 100 as much as 20 percent of subhalo remains bound!!!
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Numerical Criteria to Judge Reliability

Disruption

Instability
foouna=1-R€r Ng= 80 NO2

-3

vdBosch+17, in prep.

e Disruption if characteristic acceleration drops below central acceleration: achar/ao < 1.2
G M(r) G M(m)

aO — h'm 2 achar -
rl0 r ETh (Power+03)

® Discreteness driven runaway instability kicks in when IdN/dtl > 100/Tgyn
For average subhalo mass loss rate this implies N < 80 NEG
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Conclusions *
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* Abundance & demographics of dark matter substructure
Important for variety of astrophysical applications.

% Subhalo disruption is prevalent in numerical simulations

w What causes subhalo disruption?

® Dynamical friction (physical)
e Inadequate force resolution (humerical)
e Discreteness noise (numerical)
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% Current generation of cosmological simulations still suffers from
severe overmerging.

e serious road-block for small-scale cosmology program
® serious road-block for understanding galaxy formation
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| @ Dissecting the evolution of dark matter subhaloes in the Bolshoi simulation
1 van den Bosch F, 2017, MNRAS, 468, 885
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® Disruption of Dark Matter Substructure: Fact of Fiction?

van den Bosch F., Ogiya G., Hahn O., Burkert A., 2017, MNRAS, in press
(arXiv:1711.05276)
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® Dark Matter Substructure in Numerical Simulations:
A Tale of Discreteness Noise, Runaway Instabilities and Artificial Disruption

van den Bosch F,, Ogiya G., 2017, MNRAS, submitted &
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\Subhalo Evolutionl

Channels

A]ccretion
B]lossoming
[D]isruption
E]jection
Ilmmaculate
M erging
R]e-accretion
Y% (sub)halo with M<Mmin S]tripping
O host halo ‘T]ransitioning

Q first-order subhalo [W]ithering
O second-order subhalo e[X]change




The Relative Importance of Evolution-Channels

Forwards Backwards At=170 Myr
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van den Bosch, 2016

* Stripping of higher-order subhalos is dominant addition channel
% Re-accretion gain roughly balanced by ejection loss (R = -E)

% Exchange gain roughly balanced by exchange loss (X* = -X)
% Accretion gain roughly balanced by withering loss (A = -W)
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The Mass Evolution of Dark Matter Subhaloes

Analytical Model with Orbit Integration Idealized Simulation of NFW halo in fixed potential
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Penarrubia et al. 2010

Note the stair-case like evolution of subhalo mass...
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Bolshoi Simulation: Mass and Vmax histories

subhalo host halo subhalo

log[m/m,_]

N -

Based on Bolshoi + Rockstar van den Bosch, 2016
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Mass and Vmax histories

At=42 Myr

Mass Galn Vv Vmc'.\x

Decrease : Increase

frequency [arbitrary units]

— bt [

04 -02 0 02 O ~0.1 0 0.1
log[m(t+At)/m(t)] log[V__ (t+At)/V__ (t)]

Based on Bolshoi + Rockstar van den Bosch, 2016

* Net mass loss is consequence of small asymmetry in dm/dt

% Typical m(t) and Vmax(t) of subhalo are extremely jagged’. This cannot be
physical, and most likely is consequence of unbinding algorithm used.

* Instantaneous subhalo mass and maximum circular velocity are unreliable,
almost stochastic parameters...
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Statistics of Subhalo Disruption
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Disruption occurs

preferentially:

- at small halo-centric radi

- along more radial orbits,

- at first or second
pericentric passage.

However, disruption is
NOT biased with respect
to the number of particles
In the subhalo...

What causes this
disruption???

Based on Bolshoi + Rockstar
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Stripping & Merging Channels

Subhalos in S(tripping) channel have
velocity wrt parent sub-halo that is 3-10x

larger than Vmax of parent.
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S(tripping) and M(erging) correspond
to high-speed (impulsive) penetrating
encounters among subhaloes

Rate of penetrating encounters with more massive subhalos

T M2
)

Rene = (0.33 £ 0.04)Gyr~+ MY} (

Typical subhalo experience roughly one
penetrating encounter per dynamical time
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Demographics of Accretion & Ejection
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Disruption Demographics
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Demographics of S & M Channels

llllllllllllll lllllllllllllllllll

dN/d(r/r,,)
T T T

)

dN/d(r(E)/r,.)

0 0
1 2 0.2 04 0.6 0.8 0 02 04 06 08 1
r (E)/r,. n=L/L(E) r/r,.

PP B B
dN/d(T/|U])

dN/dlog[m/m__]

0 0
0 0204 08 08 1 -15 -1 -05 O
Zace log[m/m,.]

vdB & Jiang, 2016, in prep

Frank van den Bosch Yale University



Subhalo Disruption in the Bolshoi Simulation
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van den Bosch, 2016

Three modes of disruption in Bolshoi

Withering: subhaloes whose mass is

, _ Examples of Dq subhalos the last 0.8Gyr prior to disruption.
stripped below mass resolution.

All these examples have Ny > 5000 at disruption

Merging (Dm): subhaloes that merge with
host halo; driven by dynamical friction.

Disintegration (Dq): subhaloes that seem
to “spontaneously’ disintegrate close to
pericenter...
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