On the origin of the correlation between halo mass and its globular cluster system mass

Oleg Gnedin

(University of Michigan)

Nick Choksi (UC Berkeley)

It started with bimodality of the metallicity distribution, then came unimodality, multimodality...

Peng et al. 2006 – HST Virgo Cluster Survey

Muratov & OG 2010 Li & OG 2014

Color/metallicity distribution of GCs in most galaxies is multimodal

Each metallicity group tells us about distinct episodes of cluster formation

Model for GC formation in gas-rich galactic mergers, metallicity assigned from observed M_{*}-Z relation for host galaxies

Analytical model for the buildup of globular cluster systems from *gas-rich mergers* and *accretion of galaxies*:

begin with cosmological simulations of halo formation

supplement halos with cold gas mass based on observations

use \dot{M}_{GC} - M_{gas} relation from hydro simulations of galaxy formation

metallicity from observed M_{*} - Z relation for host galaxies, including evolution with time

tidal disruption leaves only a small fraction of clusters at z=0

Li & OG 2014

New model with updated galaxy scaling relations circa 2017 (cold gas fraction, metallicity evolution, new halo catalogs)

Model has <u>two</u> adjustable parameters:

$$M_{\rm GC} = 1.8 \times 10^{-4} p_2 M_g$$

GCS rate scales with cold gas mass

$$R_m \equiv \frac{M_{h,2} - M_{h,1}}{t_2 - t_1} \frac{1}{M_{h,1}}$$

GC form when halo is actively growing (often due to mergers)

Cluster formation is triggered if $R_m > p_3$

The rest are published galactic scaling relations:

Lilly+13, Genzel+2015, Tacconi+2017

Mannucci+2009, Kirby+13, Ma+16

$$\frac{M_g}{M_*} \equiv \eta(M_*, z) = \eta_9 \left(\frac{M_*}{10^9 \, M_\odot}\right)^{-n_m} (1+z)^{n_z} \qquad \text{[Fe/H]} = \log_{10} \left[\left(\frac{M_*}{10^{10.5} M_\odot}\right)^{\alpha_m} (1+z)^{-\alpha_z} \right]$$

+ alternative versions for evolution of gas fraction and mass-metallicity relation (MMR)

New model with updated galaxy scaling relations circa 2017 (cold gas fraction, metallicity evolution, new halo catalogs)

Observations include:

- Milky Way, M31
- Virgo Cluster galaxies
- Brightest Cluster Galaxies

GCS mass – Galaxy mass relation: beyond linear

Most blue clusters form when halo mass is $2 \times 10^{10} - 10^{11} M_{\odot}$ at redshifts z = 3-7

Red clusters form at z = 2-4 in most massive galaxies, and at z = 1-2 in dwarfs (downsizing effect)

Mass of hosts of red clusters scales with final galaxy mass

25% - 75% range of all clusters formed (and survived to z=0) within a galaxy of mass M_h Gas-rich mergers of massive galaxies trigger cluster formation

Cluster MF is more strongly truncated between mergers

Summary

• Analytical model for cluster formation and disruption, based on halo assembly from cosmological simulations and observed galactic scaling relations

• Matches the number of GCs, mean and width of the metallicity distribution for galaxies from $M_* = 10^9 M_{\odot}$ to $10^{12.5} M_{\odot}$

- Mergers of gas-rich galaxies may trigger/enhance formation rate of massive star clusters
- Halo mass GC mass relation is non-linear, the averaging effect is not perfect