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Abstract. The evolution of an initially stellar dipole type mag-
netosphere interacting with an accretion disk is investigated
numerically using the ideal MHD ZEUS-3D code in the 2D-
axisymmetry option. Depending mainly on the magnetic field
strength, our simulations may last several thousands of Keple-
rian periods of the inner disk. A Keplerian disk is assumed as a
boundary condition prescribing a mass inflow into the corona.
Additionally, a stellar wind from a rotating central star is pre-
scribed. We compute the innermost region around the stellar
object applying a non-smoothed gravitational potential.

Our major result is that the initially dipole type field develops
into a spherically radial outflow pattern with two main compo-
nents, a disk wind and a stellar wind component. These com-
ponents evolve into a quasi-stationary final state. The poloidal
field lines follow a conical distribution. As a consequence of the
initial dipole, the field direction in the stellar wind is opposite
to that in the disk wind. The half opening angle of the stellar
wind cone varies from30◦ to 55◦ depending on the ratio of the
mass flow rates of disk wind and stellar wind. The maximum
speed of the outflow is about the Keplerian speed at the inner
disk radius.

An expanding bubble of hot, low density gas together with
the winding-up process due to differential rotation between star
and disk disrupts the initial dipole type field structure. An axial
jet forms during the first tens of disk/star rotations, however,
this feature does not survive on the very long time scale. A
neutral field line divides the stellar wind from the disk wind.
Depending on the numerical resolution, small plasmoids are
ejected in irregular time intervals along this field line. Within a
cone of15◦ along the axis the formation of small knots can be
observed if only a weak stellar wind is present.

With the chosen mass flow rates and field strength we see
almost no indication for a flow self-collimation. This is due
to the small net poloidal electric current in the (reversed field)
magnetosphere which is in difference to typical jet models.
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1. Introduction

A stellar dipole type magnetic field surrounded by an accretion
disk is the common model scenario for a variety of astrophysical
objects. Examples are the classical T Tauri stars, magnetic white
dwarfs (in cataclysmic variables) and neutron stars (in high mass
X-ray binaries). Part of these sources exhibit Doppler shifted
emission lines indicating wind motion. Highly collimated jets
have been observed from young stellar objects and X-ray bina-
ries, where also quasi-periodic oscillations (QPO) are observed.
In general, magnetic fields are thought to play the leading role
for the jet acceleration and collimation (Blandford & Payne
1982; Pudritz & Norman 1983; Camenzind 1990; Shu et al.
1994; Fendt et al. 1995).

Recently, several papers were considering the evolution of a
stellar magnetic dipole in interaction with a diffusive accretion
disk. Hayashi et al. (1996) observed magnetic reconnection and
the evolution of X-ray flares during the first rotational periods.
Miller & Stone (1997) Goodson et al. (1997) included the evo-
lution of the (diffusive) disk structure in their calculation. In
these papers a collapse of the inner disk is indicated depending
on the magnetic field strength and distribution. The inward ac-
cretion flow develops a shock near the star. The stream becomes
deflected resulting in a high-speed flow in axial direction.

The results of Goodson et al. (1997, 1999) and Goodson
& Winglee (1999) are especially interesting since combining a
huge spatial scale (2 AU) with a high spatial resolution near the
star (0.1R�). However, to our understanding it is not clear, how
the initial condition (a standardα-viscosity disk) is really de-
veloping in their code without any physical viscosity. Secondly,
not very much is said about the amount of magnetic diffusivity.
The assumption of constant diffusivity cannot really reflect the
two component model of disk and coronal out flow.

Time-dependent simulations lasting only a short time scale
depend strongly on the initial condition and the calculation of
the evolution of such a magnetosphere overmany rotational
periods is an essential step. In particular, this is an important
point if the initial condition is not in equilibrium. In summary,
we note that all calculations including the treatment of the disk
structure could be performed only for a few Keplerian periods
of the inner disk (and a fraction of that for the outer disk).
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At this point, we emphasize that the observed kinematic
time scale of protostellar jets can be as large as103–104 yrs,
corresponding to5×104–5×105 stellar rotational periods (and
inner disk rotations)! For example, proper motion measurements
for the HH30 jet (Burrows et al. 1996) give a knot velocity of
about100–300 km s−1 and a knot production rate of about 0.4
knot per year. Assuming a similar jet velocity along the whole
jet extending along 0.25 pc (Lopez et al. 1995), the kinematic
age is about 1000 yrs.

A different approach for the simulation of magnetized winds
from accretion disks considers the accretion disk ‘only’ as a
boundary conditionfor the mass inflow into the corona. Since
the disk structure itself is not treated, such simulations may last
over hundreds of Keplerian periods. This idea was first applied
by Ustyugova et al. (1995). Extending this work, Romanova et
al. (1997) found a stationary final state of a slowly collimating
disk wind in the case of a split-monopole initial field structure
after 100 Keplerian periods. Ouyed & Pudritz (1997, hereafter
OP97) presented time-dependent simulations of the jet forma-
tion from a Keplerian disk. For a certain (already collimating)
initial magnetic field distribution, a stationary state of the jet
flow was obtained after about 400 Keplerian periods of the in-
ner disk with an increased degree of collimation. In a recent
extension of their work both groups were considering the influ-
ence of the grid’s shape on the degree of collimation (Ustyugova
et al. 1999) and the effect of the mass flow rate (Ouyed & Pudritz
1999). Ouyed & Pudritz (2000) investigate the problem of jet
stability and magnetic collimation extending the axisymmetric
simulations to 3D.

In this paper, we are essentially interested in the evolution of
the ideal MHD magnetosphere and the formation of winds and
jets and not in the evolution of the disk structure itself. Therefore,
we do not include magnetic diffusivity into our simulations. The
disk acts only as a boundary condition for the corona/jet region.
The winding-up process of poloidal magnetic field due to strong
differential rotation between the star and the disk would always
be present even if a disk diffusivity would have been taken into
account. The disk diffusivity will never be so large that a rigid
rotation of the magnetosphere in connection with the disk can
be maintained.

In that sense our simulations represent an extension of the
OP97 model, taking additionally into account the central star
as a boundary condition and a stellar dipole type field as initial
condition. First results of our simulations were presented in
Fendt & Elstner (1999, hereafter FE99). Here we give a more
detailed discussion together with new results. Movies of our
simulations will be provided underhttp://www.aip.de/∼cfendt.

2. Basic equations

Using the ZEUS-3D MHD code (Stone & Norman 1992a,b;
Hawley & Stone 1995) in the 2D-axisymmetry option we
solve the system of time-dependent ideal magnetohydrody-
namic equations,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂B

∂t
− ∇ × (v × B) = 0 , (2)

∇ · B = 0 , (3)

ρ

[
∂v

∂t
+ (v · ∇)v

]
+ ∇(P + PA) + ρ∇Φ − j × B = 0 , (4)

whereB is the magnetic field,v the velocity,ρ the gas density,
P the gas pressure,j = ∇×B/4π the electric current density.
andΦ the gravitational potential. We assume a polytropic ideal
gas,P = Kργ with a polytropic indexγ = 5/3. Similar to
OP97, we have introduced a turbulent magnetic pressure due
to Alfv én waves,PA ≡ P/βT , whereβT is assumed to be
constant. OP97 considered the turbulent magnetic pressure in
order to support the cold corona of e.g. young stellar accretion
disks for a given gas pressure. Clearly, the assumption of a
constantβT is motivated by the reason of simplification. Using
dimensionless variables,r′ ≡ r/ri, z′ ≡ z/zi, v′ ≡ v/vK,i,
t′ ≡ tri/vK,i, ρ′ ≡ ρ/ρi, P ′ ≡ P/Pi, B′ ≡ B/Bi, Φ′ =
−1/

√
r′2 + z′2’, where the indexi refers to parameter values

at the inner disk radiusri, the normalized equation of motion
eventually being solved with the code is

∂v′

∂t′
+ (v′ · ∇′)v′ =

2 j′ × B′

δi βi ρ′ − ∇′(P ′ + P ′
A)

δi ρ′ − ∇′Φ′ . (5)

The coefficientsβi ≡ 8πPi/B2
i andδi ≡ ρiv

2
K,i/Pi with the

Keplerian speedvK,i ≡ √
GM/ri, correspond to the plasma

beta and the Mach number of the rotating gas. For a ‘cold’
corona withP ′

A > 0, it follows βT = 1/(δi(γ − 1)/γ − 1).
In the following we will omit the primes and will discuss only
normalized variables if not explicitly declared otherwise.

Note that in our figures the horizontal axis is always the
z-axis and the vertical axis is ther-axis.

3. The model – numerical realization

In general, our model represents a system consisting of a central
star and an accretion disk separated by a gap. Star and disk are
initially connected by an dipole type magnetosphere. Axisym-
metry is assumed. The stellar rotational period can be chosen
arbitrarily. The disk is in Keplerian rotation. Disk and star are
taken into account as an inflow boundary condition. It has the
advantage that the behavior of the wind flow can be studied
independently from the evolution of the accretion disk.

This is an essential point, since the numerical simulation of
the magnetized disk structure represents itself one of the most
complicated and yet unresolved problems of astrophysics. It is
therefore unlikely to find a proper disk initial condition which
is in equilibrium. Yet, all MHD disk simulations could be per-
formed only for a few Keplerian periods (e.g. Hayashi et al.
1996, Miller & Stone 1997; Kudoh et al. 1998). A global solu-
tion of the disk-jet evolution does not yet seem to be numerically
feasible.

The general disadvantage involved with such a fixed disk
(plus star) boundary condition is that the fundamental question
of the wind/jet formation evolving out of the accretion disk
cannot be investigated.
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3.1. Numerical grid and initial condition

Prescribing a stable force-equilibrium as initial condition is es-
sential for any numerical simulation. Otherwise the simulation
will just reflect the relaxation process of such an unstable (and
therefore arbitrary) initial condition to a state of stability. In
particular this would be important if only few time steps are
computed.

In our model, we assume an initially force-free (and also
current-free) magnetic field together with a density stratifica-
tion in hydrostatic equilibrium. Such a configuration will re-
main in its initial state if not disturbed by a boundary condition.
The initial density distribution isρ(r, z) = (r2 + z2)−3/4. The
gravitational point mass is located half a grid element below the
origin. Due to our choice of cylindrical coordinates we cannot
treat the stellar surface as a sphere. Along thestraight lowerr-
boundary we define the ‘stellar surface’ fromr = 0 to r = r?,
a gap fromr = r? to r = ri = 1.0, and the disk fromr = 1.0
to r = rout (see Fig. 1).

We have chosen an initial field distribution of a force-free,
current-free magnetic dipole, artificially deformed by (i) the ef-
fect of ‘dragging’ of an accretion disk, and (ii) an ‘opening’ of
the field lines close to the outflow boundaries. The initial field
distribution is calculated using a stationary finite element code
described in Fendt et al. (1995). In this approach, the axisym-
metricφ-component of the vector potentialAφ is computed (as
solution of the well-known Grad-Shafranov equation) using a
numerical grid with twice the resolution of the grid applied in
the ZEUS code. Our finite element code allows for a solution of
the stationary boundary value problem forany boundary con-
dition. Thus, we are able to define any force-free solution as
initial condition for the simulation.

With that, from the vector potential the initial field distribu-
tion for the time-dependent simulation is derived with respect
to the ZEUS-3D staggered mesh,

Bz(i, j) = 2 (Aφ;i,j+1 − Aφ;i,j)/(r2
i,j+1 − r2

i,j) ,

Br(i, j) = − (Aφ;i+1,j − Aφ;i,j) / (ri,j (ri+1,j − ri,j)) . (6)

Here, the first and second indexi andj denote thez- andr-
direction, respectively. A suitable normalization factor is mul-
tiplied in order to match the field strength defined by the coeffi-
cientsβi andδi. With this approach the maximum normalized
|∇ · B| is 10−15 and|j × B| = 0.01|B|.

The boundary conditions for the initial magnetic field dis-
tribution calculated with the finite element code are the follow-
ing. (i) A dipolar field along the stellar surfacer < r? given
as Dirichlet condition; (ii) a homogeneous Neumann condition
along the gap between star and disk; (iii) a detached dipolar field
along the disk (as Dirichlet condition),

Aφ(r) =
(

1
r

r2

(r2 + z2
D)3/2

)
Ã(r); with Ã(r) = r−3/2, (7)

and (iv) a homogeneous Neumann condition along the outer
boundaries. This implies a poloidal field inclined to the disk
surface which would support magneto-centrifugal launching of
a disk wind. The amount of ‘dragging’ can be defined by choos-
ing a different functionÃ(r). The initial field is calculated with
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Fig. 1. Numerical model. Active region (white) and boundary region
(pattern). Star, gap and Keplerian disk are prescribed along ther-inflow
boundary with the stellar radiusr?, inner disk radiusri ≡ 1.0, and
maximum radiusrout. The numerical grid size is250×250. For clari-
fication, the poloidal field lines of the initial dipole type magnetic field
are shown as a sketch. The field smoothly continues into the ghost
zones.

az-offset,z2
D

>∼ r?/
√

2. This offset avoids un-physically strong
field strengths close to the stellar surface, but leaves the field
in a force-free configuration. Again, we emphasize that such a
force-freeinitial field is essential in order to apply a hydrostatic
corona as initial condition.

3.2. The boundary conditions

The boundary condition for the poloidal magnetic field along
the inflow boundary is fixed to the initial field. The magnetic
flux from the star and disk is conserved. The field along the
lower boundaryz = 0 corresponds to that given by Eq. (7). The
boundary condition for the toroidal magnetic field component
is Bφ = µi/r for r ≥ ri with the parameterµi = Bφ,i/Bi. No
toroidal field is prescribed at the stellar surface.

Hydrodynamic boundary conditions are ‘inflow’ along the
r-axis, ‘reflecting’ along the symmetry axis and ‘outflow’ along
the outer boundaries. The inflow parameters into the corona are
defined with respect to the three different boundary regions –
star, gap and disk. The matter is ‘injected’ into the corona par-
allel to the poloidal field lines,vinj(r, 0) = κivK(r)BP/BP
with a densityρinj(r, 0) = ηi ρ(r, 0). This defines the normal-
ized mass flow rate in the disk wind,

ṀD = 2π

∫ rout

ri

ρinj,D vinj,D dr = 2πηi,Dκi,D

(
1
ri

− 1
rout

)
. (8)

Additionally to the disk wind boundary condition, we assume
a wind component also from the stellar surfacer < r?. The
density profile of the stellar wind injection is the same as for the
diskρinj,?(r, 0) = ηi? ρ(r, 0). In the examples discussed in this
paper, the injection velocity is chosen as constantvinj,?(r, 0) =
κi,?vK,iBP/BP. This gives a mass loss rate of the stellar wind
component of

Ṁ? = 2π

∫ r?

r0

ρinj,? vinj,? dr = 2πηi,?κi,?

(
1√
r0

− 1√
r?

)
. (9)
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In this case,r0 is the radius of the center of the innermost grid
element (thex2b(3) value in the ZEUS code staggered mesh)
and is therefore biased by the numerical resolution.

This is motivated partly by numerical reasons and partly by
the fact thatstellar windsare indeed observed. Concerning the
first point, the initial setup of a force-free magnetosphere will
be distorted within the very first evolutionary steps giving rise
to Lorentz forces. These forces disturb the initialhydrostatic
equilibrium resulting in a mass outflow from the regions above
the star. As a consequence, this part of the magnetosphere will
be depleted of matter, if no additional mass inflow from the star
is present. The small density implies a strong decrease in the
numerical time step discontinuing the simulation.

On the other hand, an additional mass flow from the stellar
surface is not unlikely. Stellar winds are common among active
stars, most probably being present also in the systems inves-
tigated in this paper. Yet, it is not known whether stellar jets
originate as disk winds (Pudritz & Norman 1983) or as a stellar
wind (Fendt et al. 1995). Variations of the ‘standard’ protostel-
lar MHD jet model usually deal with a two-component outflow
(Camenzind 1990; Shu et al. 1994). Model calculations of the
observed emission line regions also indicate a two-component
structure (Kwan & Tademaru 1995). Therefore, the stellar wind
boundary condition seems to be reasonable.

The ratio of the mass flow rates in the two outflow compo-
nents will definitely influence the jet structure. Therefore, we
have chosen different values for that ratio in our simulations
(Table 1). Long-term evolution runs over several hundreds of
rotational periods we have only obtained considering a rather
strong stellar wind flow which stabilizes the region close to the
rotational axis. Since the velocity and density profiles decrease
rather fast along the disk, the contribution tȯMdisk from radii
larger thanrout is negligible.

The electro-motive force boundary condition along the in-
flow axis is calculated directly from the prescribed velocity and
magnetic field distribution,E(r) = v(r) × B(r). Note that
magnetic field and velocity have to be taken properly from the
staggered mesh points in order to giveE(r) as anedge-centered
property. In the case of a stellar rotation,E /= 0 for r < r?.

3.3. Numerical tests

Before applying the ZEUS-3D code to our model we performed
various test simulations, in particular a recalculation the OP97
2D jet simulations (see Appendix). Our choice of initial density
distribution is stable with very good accuracy. Following OP97
this was tested by a run without the inflow boundary condi-
tions and magnetic field. Another signature of our proper initial
magnetohydrostatic condition is the stability of the hydrostatic
initial condition during the simulation itself.

Force-freeness of the magnetic field distribution can be
tested by calculating thej(r, z) ∼ ∇ × B current distribu-
tion which ideally should vanish as a consequence of the initial
condition applied. Force-freeness can not fully be satisfied when
transforming the finite element solution to the ZEUS code initial
condition, however, an error of0.01 % is acceptable in order to

Table 1. The table shows the parameter set varying for the four sim-
ulation runs S2, S4, L3, L5. Simulation L1 is from FE99. All the
other parameters remain the same (βi = 1.0, βT = 0.03, δi = 100,
µi = −1.0, r? = 0.5).

κi,? κi,D ηi,? ηi,D Ω? ṀD/Ṁ?

L1 – 10−3 – 100 – –

S2 10−6 10−3 103 1 1 0.5

S4 10−4 10−3 103 103 1 2.8
L3 10−4 10−3 200 200 1 1.8
L5∗ 10−4 10−3 103 100 1 0.2
∗ Disk injection velocity profile is∼ v2

K(r)

avoid artificial effects during the first time steps until the field
distribution has evolved from its initial state.

The stability of our initial condition is demonstrated in
Fig. A.1 showing an overlay of several initial time steps of an
example simulation without a stellar rotation presented in FE99.
The density and field distribution in the yet undisturbed regions
perfectly match during the first decades of evolution (t < 75).

4. Results and discussion

In the following we discuss the results of four example simula-
tions denoted by S2, S4, L3, L5 (see Table 1). All the simulations
presented in this paper consider a rotating star at the center. The
stellar rotational period is chosen asΩ? = (vK,i/Ri) = 1, with
a magnetospheric co-rotation radius located at the inner disk
radius. The evolution of a non-rotating central star is discussed
in FE99, although it was not possible to perform the simulation
as long as the examples presented here.

As a general behavior, the initial dipole type structure of
the magnetic field disappears on spatial scales larger than the
inner disk radius and a two component wind structure – a disk
wind and a stellar wind – evolves. Our main result is the finding
of a quasi-stationaryfinal state of a spherically radial mass
outflow evolving from the initial dipole type magnetic field on
the very extended time evolution. For the boundary conditions
applied the calculated flow structure show only few indication
for collimation.

The general features in the evolution of the system are inde-
pendent from a variation of the field strength. For strong fields,
the evolution is faster. Thus, for simulations which are limited in
time due to numerical problems, a decrease in the field strength
would not help. Although the numerical life time of the simu-
lation would be accordingly longer, the result for the final time
step will be the same.

4.1. Four simulations of the long-term magnetospheric
evolution – an overview

The four example simulations basically differ in the mass flow
rates from disk and star and the size of the physical domain in-
vestigated (Table 1). All other parameters,βi = 1.0, δi = 100,
µ = −1.0, r? = 0.5, γ = 5/3, and the numerical mesh of
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Fig. 2. Simulation S2 in a box of20 × 20 ri. Shown are density (grey scale) and poloidal field lines (contour lines) fort =
0, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2500 (from left to right and top to bottom). The density at the inner disk radius isρi = 1.0.
The legend shows the density limits used for the color coding (which itself uses the inverse density profile). The stellar radius isr? = 0.5 ri.

Fig. 3.Simulation S4 in a box of10× 10 ri. Density and poloidal field lines. Notation equivalent to Fig. 2. Time stepst = 0, 10, 40, 400, 600ti.

250 × 250 grid elements remain the same. The first simulation
(solution S2) considers a rectangular box of physical size of
20x20 inner disk radii (Fig. 2, Fig. 5, Fig. 7). The stellar wind
mass flow rate is comparatively large,Ṁ?/ṀD = 2. The stel-
lar wind injection velocity is very low in order to not disturb

a possible weak wind solution already by the boundary con-
dition. The disk wind boundary condition is the same as in
OP97 and FE99. Due to the relatively large physical size of
the computational domain the stability of the initial condition
can be observed for several decades of rotational periods. The
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Fig. 4. High resolution simulation L3 in a box of5 × 5 ri. AboveDensity and poloidal field lines. Notation equivalent to Fig. 2.Below
Contour plots of the toroidal magnetic field strength. The toroidal field is positive (negative) outside (inside) the neutral line. Time steps are
t = 0, 10, 20, 80, 160 (from left to right).

torsional Alfvén waves leave the grid after aboutt = 40. The
second simulation (solutionS4) considers a rectangular box of
physical size of 10x10 inner disk radii (Fig. 3, Fig. 5, Fig. 7).
Now the total mass flow is dominated by the disk wind. This
choice of parameters can be directly seen from the simulation
by comparing the size of axial flow and the ‘bubble’ evolving
from the disk flow. Clearly, the disk flow is more prominent. The
third (solutionL3) considers a rectangular box of physical size
of only 5x5 inner disk radii (Fig. 4, Fig. 6). Similar to solution
S4, the total mass flow is dominated by the disk wind. This high
resolution simulation zooms into the innermost region around
the star. In particular, the neutral line is clearly resolved. We
finally discuss another example (L5) in which the stellar wind
is dominating the disk wind. This simulation perfectly evolves
into final stationary state. For L5 the velocity injection profile
is chosen differently from the examples discussed above in or-
der to increase the disk flow magnetization. All parameter runs
show a similar gross behavior indicating that our run S2 with
lowest resolution is sufficient in order to investigate the main
features of the flow evolution. In general, a high stellar wind
mass loss rate will stabilize the outflow.

4.2. The first evolutionary stages

During the first stages of the long-term evolution the magneto-
spheric structure is characterized by the following main features:
Thewinding-upof the dipolar poloidal field, the formation of a
neutral field line, a transient axial jetfeature, a two component
outflow consisting of astellar windand adisk wind.

4.2.1. Winding-up of the poloidal field

The winding-up process of poloidal magnetic field due to differ-
ential rotation between star and disk and the static initial corona
induces a toroidal field (Fig. 4) with a positive sign along field
lines located outside the slowly emerging neutral field line. In-
side the neutral field lineBφ has negative sign. This is in differ-
ence to OP97 and other simulations assuming a monotoniccally
distributed initial field.

Torsional Alfvén waves propagate outwards distorting the
initial field structure. After aboutt = 40 these waves reach the
outer boundary (Fig. 2). The region beyond the wave front re-
mains completely undisturbed. The region between the Alfvén
wave front and the flow bow shock is adjusted to a new equi-
librium and also remains in equilibrium until it is reached by
the generated outflow ( See the density contour lines close to
the disk in Fig. A2. The grey scale density plots cannot show
this feature). Within this Alfv́en wave front the magnetic field
becomes distorted from its initial force-free state (compare the
field line structure of the closed loops in Fig. 2 fort ≤ 30).
The distortion of the force-free field due to propagating Alfvén
waves results in Lorentz forces initiating an axial ‘jet’ feature
close to the axis. As we will see later, this axial jet, however, is
a transient feature.

The winding-up of poloidal magnetic field seems to be sim-
ilar to the effect proposed by Lovelace et al. (1995). However,
in our case, this process is initiated by the differential rotation
between star and hydrostatic corona. Only later, the wound-up
toroidal field is maintained by both, differential rotation between
star and disk and the inertia of the outflow.
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4.2.2. A neutral field line dividing stellar and disk field

The wound-up magnetic field lines stretch forming a neutral
field line of vanishing field strength. The matter around this
field line is distributed in a layer of low density (Fig. 4). Around
this layer an expanding ‘bubble’ is formed due to the additional
magnetic pressure due to toroidal fields which disrupts the initial
dipolar field structure (Fig. 3). When the bubble has left the grid,
the field lines which are separated by the the neutral line remain
disconnected. This is due to the differential rotation between
star and disk. The actual appearance of the axial jet and the low
density bubble depends mainly on the mass flow rates from disk
and star. The bubble is most prominent in simulation S4 where
the disk mass flow rate is largest.

4.2.3. A transient axial jet feature

In the beginning of the simulations a jet feature evolves along
the rotational axis. Its pattern velocity is about0.2 vK,i (S2)
or 0.3 vK,i (L3). Such an axial jet is known as a characteristic
result of MHD simulations performed in the recent literature
(Hayashi et al. 1996; Goodson et al. 1997, 1999; Goodson &
Winglee 1999; Kudoh et al. 1998). It is often claimed that this
feature is connected to the real (protostellar) jets observed on
the AU-scale. Apart from the fact that the spatial dimension and
velocity do not fit with the observations, we will see that the
formation of this feature is a result of the adjustment process of
the initially hydrostatic state to a new dynamic equilibrium and
will disappear on the long-term evolution.

Winding-up of the initially force-free magnetic field by dif-
ferential rotation during the first time steps immediately leads
to a not force-free field configuration. The resulting magnetic
forces accelerate the material of the initially hydrostatic corona
forming an axial jet. This process works as long as initially dis-
tributed coronal matter is present at this location. As time devel-
ops the jet feature becomes weaker and weaker. Disk wind and
the stellar wind become the dominant flow pattern and the axial
jet dies out after aboutt > 100 (Fig. 2). In comparison, in sim-
ulation L1 (FE99), where a stellar wind is absent, the coronal
density along the axis decreases until it is below the numerically
critical value and the simulation stops.

The intermittent character of the axial jet flow is best seen
in the velocity structure (Fig. 5). The velocity vectors of the
axial flow are largest during the first time steps. However, after
sweeping-out the initial corona, a weak wind flow from the
stellar surface succeeds the jet.

4.2.4. The disk wind

The disk wind accelerates within tens of grid elements from
its low injection speed to fractions of the Keplerian speed. The
acceleration mechanism is mainly due to the centrifugal force
on the disk matter reaching the non-rotating corona, where the
gravitational force is balanced by the pressure and not by a cen-
trifugal force as in the disk. The flow is already super Alfvénic
due to the weak dipolar field strength in the disk. Thus, magneto-

centrifugal acceleration along the inclined dipole type field lines
of the initial magnetic field isnot the acceleration mechanism.
More above the disk also the Lorentz force along the field con-
tributes to the acceleration (see Sect. 4.4.3.). The inclination
angle between field lines (equivalent to the outflow direction)
and the disk depends on the mass flow rate. For the parameter
range investigated we see no indication for a disk wind collima-
tion because the Lorentz force points away from the axis (see
below).

4.2.5. The stellar wind

The rotating stellar magnetosphere generates a stellar wind. Due
to the strong magnetic field close to the star the flow starts
sub-Alfvénic. It is initially magneto-centrifugally driven with a
roughly spherical Alfv́en surface located at1.5ri (L3) or closer
(S2, S4, L5) to the stellar surface. The most dominant flow
pattern of the stellar wind is in the part with the widest open-
ing angle (Fig. 5). Although the Lorentz force points radially
inwards no collimation is observed because of a strong pres-
sure gradient. Depending on the mass loss rates the stellar wind
evolves faster or slower than the disk wind (Fig. 5).

4.3. The long-term evolution

The long-term evolution of the flows depends critically on the
choice of inflow boundary conditions into the corona. The to-
tal mass flow rate into the corona determines how fast the flow
will establish a (quasi-)stationary state. The stellar wind - disk
wind mass flow ratio determines (i) the opening angle of the
outflow, (ii) the opening angle of the cone of the neutral line
which is the boundary layer between the stellar wind and the
disk wind, and (iii) the stationarity of the axial flow (see Ta-
ble 2). In general the outflow undergoes a highly time-variable
and turbulent evolution. However, after relaxation of the MHD
system from the initial magneto hydrostatic state into the new
dynamicalequilibrium, we observe an outflow from disk and
star distributed smoothly over the whole hemisphere and mov-
ing predominantly in spherically radial direction.

In simulation S2 the flow structure is highly time-variable
over many hundreds of periods. The intermediate region be-
tween the two components – stellar wind and disk wind – is
characterized by turbulent motions of very low velocity. But
also the disk wind seems to be unstable. During the intermedi-
ate time evolution only the flow pattern along thez-axis relaxes.
Compared to the evolution of the stellar wind, the disk wind
needs definitely more time to establish a stationary structure.
However, after all these turbulent evolutionary steps, with few
changes in the general appearance of the flow pattern over hun-
dreds of rotational periods,after about 2000–2500 rotations a
quasi-stationary outflow has been establishedover the whole
grid (Fig. 2). Only the region around the neutral line dividing
stellar and disk wind and the region along thez-axis is sub-
ject to small scale instabilities. Interestingly, the flow along the
symmetry axis which shows a stable behavior during the in-
termediate time evolution, finally becomes unstable. A conical
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Fig. 5.Evolution of the poloidal velocity in the simulations S2 (left) and
S4 (right). Time steps (fromtoptobottom). t = 10, 20, 100, 500, 2500
(S2) andt = 5, 10, 20, 100, 600 (S4). Vectors scale only within each
frame.

flow consistent of a knotty structure evolves with a full opening
angle of30◦. At this time the opening angle of the neutral layer

Fig. 6. Highly time-resolved evolution of simulation L3. Poloidal
magnetic field lines (left) and density contours (right). Time steps
t = 200, 201, 202, 203, 204 (from top to bottom).

cone dividing stellar wind from disk wind has been increased
compared to the intermediate time steps. This de-collimation of
the outer flow causes a de-stabilization of the axial flow. In this
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sense, the stellar wind flow is stabilized by the ambient (disk
wind) pressure. The formation of knots and instabilities along
the symmetry axis depends on the stellar wind mass flow rate
(see below). The full opening angle of ‘knot flow‘ is about 30◦to
50◦. We emphasize that due to the knot size and knot spacing,
these features are not correlated to the observed knots of proto-
stellar jets. It seems more related to QPO’s observed in X-ray
binaries. The knot velocity is about 10% of the Keplerian speed
at the disk inner radius.

In simulation S4 the quasi-stationary state is reached earlier
after about 200 inner disk rotations according to the smaller box
size (Fig. 3). The region around the neutral field line is resolved
better. We observe the formation of a wavy structure with an
amplitude of0.5 ri and a wavelength ofri. These ‘waves’ travel
outwards and leave the grid. The wave generation is somewhat
arbitrary in time. Whereas the region enclosing the neutral layer
first seems to have reached a steady state at aboutt = 100, at
t = 600 the wave structure evolves again. This is related to
the evolution along the symmetry axis. Here, in the contrary, at
t = 100 the simulation still showed a wavy pattern, whereas at
t = 600 a smooth steady state has evolved. The flow structure
at t = 400 seems to be completely smooth and stable. The
long-term evolution shows that this stability is in fact a transient
feature as far as the neutral layer region is concerned (see below).

Simulation L3 shows that the neutral line has a complex
structure. Two current sheaths emerge, one from the stellar ra-
dius, the other from the inner disk radius (Fig. 4). These are
indicated by the density and poloidal magnetic field ‘islands’
emitted along this field line (Fig. 4, time step 80 and 160). Fig. 6
shows the evolution of the solution L3 with a high time reso-
lution ∆t = 1 after t = 200. At this time the simulation has
not yet evolved into a quasi-stationary state. It can be seen how
plasmoids are formed and move outwards along the neutral line.
Most probably, this would be a region of on-going reconnection
processes. A similar behavior was found first by Hayashi et
al. (1996) including also magnetic diffusion in their treatment.
However, the simulation lasted only for one inner disk rota-
tional period (with a star at rest). Our long-term simulations
show that the formation of such plasmoids will continue. We do
not believe that the lack of diffusion in our treatment is a serious
problem concerning this point because the time scale given by
the plasmoid velocity is smaller than the time scale given by
magnetic diffusion.

Fig. 5 shows the poloidal velocity vectors of the simulations
S2 and S4 at selected time steps (compare to Figs. 3 and 4).
The general feature is that the axial jet feature seen in the first
time steps disappears. The outflow exhibits a two-component
structure. Depending on the inflow density profile the ‘asymp-
totic’ (i.e. close to the grid boundaries) velocity profile changes
slightly. High velocities (larger thanvK,i) are only observed far
from the axis. For solution S2 we obtain an asymptotic speed of
1.5 vK,i for both components with a velocity profile decreasing
across the neutral field line. The flow velocity along the axis is
0.2 vK,i. For solution S4 the asymptotic speed of1.5 vK,i for the
stellar wind component and with a velocity profile increasing
across the neutral field line2 vK,i. The latter is due to the low

density at this point. The disk wind has not yet accelerated to
high velocities. This is due to the wide opening angle of the stel-
lar wind cone and the small physical grid size. The flow velocity
along the axis about0.5 vK,i. For solution L5 the ‘asymptotic’
speed of the stellar wind is low and≤ vK,i. The velocity profile
is in general similar to that of solution S4.

The duration of our simulation runs (L3, L5, S2, S4) is not
limited by numerical reasons. They have been terminated when
the flow evolution has reached aquasistationary state. For sim-
ulation S2 this means that after about 2500 rotations the main
pattern in the flow evolution does not change anymore. In partic-
ular, the outer part of the wind flow does not vary in time, while
knots are still generated along the axis. For simulation S4, after
400 time steps most of the flow region is in a stationary state.
Only the wavy structure along the neutral field line, which is
also connected to the formation of knots, continuously evolves
and disappears. This structure isnot a dangerous instability for
the outflow (see also Fig. 7). For solution L3, the simulation has
been terminated when parts of the flow (the outer disk wind
flow) had reached a stationary state. The inner solution close
to the axis does not reach such a stationary state. In this case,
our intention is to investigate the neutral line with better spatial
resolution. Simulation L5 was terminated some time after the
stationary state has been reached for the whole outflow.

4.4. A stationary final state: a radial outflow evolved
from an initially dipolar magnetosphere

The main result of our simulations is that the initial dipolar
magnetosphere evolves into a spherically radial outflow con-
sisting of two components. Depending on the inflow parameters
(mass flow rates, magnetic field strength) our simulations reach
a quasi-stationary state. A weak non-stationarity may be present
along the neutral field line, which is dividing the stellar wind
from the disk wind. Also, for a weak stellar wind flow a turbu-
lent flow pattern may evolve along the axis. Such outflows we
call quasi-stationary, if the main flow pattern does not change
in time. The disk wind and the outer cone of the stellar wind
reach a kind of stationary state, where the density profile and
field line structure remain almost constant in time.

For the S2 solution the half opening angle of stellar wind
cone is about55◦. This angle remarkably changes during the
flow evolution. During the initial evolutionary decades the tur-
bulent region between the stellar wind and the disk wind colli-
mated the stellar wind to a narrower cone. Clearly, such a neutral
line is a rather unstable situation. Reconnection will most prob-
ably occur which we cannot properly treat with our ideal MHD
approach. Increasing the numerical resolution (simulation L3)
shows the emission of plasmoids along the neutral line (see be-
low). Fig. 7 shows an overlay of three time steps of solution S2 at
t = 2600, 2650, 2700 clearly indicating the stationary charac-
ter of disk wind and most parts of the stellar wind together with
the non-stationary axial flow and the small-scale wave pattern
along the neutral field line.

In the case of solution S4 the quasi-stationary state is reached
earlier after aboutt = 400 (Fig. 3). The comparatively large
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Fig. 7. Evolution of simulation S2 (up-
per) and S4 (lower) on the very long
time scale. Shown are overlays of the
poloidal field lines (left) and density con-
tours (right). Three time steps are super-
posed,τ = 2600, 2650, 2700 (S2) and
τ = 575, 600, 625 (S4).

Table 2.Terminal poloidal velocity of the wind components from the
disk vmax

p,disk, from the starvmax
p,star, along the axisvp,axial, and from

the gapvmax
p,gap, time when stationary state has been reachedts, and

the inclination angle between disk and neutral layerα for the different
simulations.

vmax
p,disk vmax

p,star vp,axial vmax
p,gap ts α

L1 1.0 ? ? ? ? ?

S2 1.0 1.5 0.2 1.5 2500 35◦

S4 1.5 2.1 0.6 1.5 400 60◦

L3 1.0 1.3 0.2 1.7 ? 50◦

L5 0.9 1.0 0.2 3.0 150 35◦

stellar wind mass flow rate stabilizes the flow along the axis
and no turbulent pattern evolves. On the other hand, due to
the low disk wind mass flow rate the half opening angle of
the neutral line cone is smaller. It is35◦ compared to55◦ for
solution S2. Again, Fig. 7 demonstrates the stationarity of the
simulation with an overlay of three time stepst = 575, 600, 625.
In comparison with solution S2 now the whole flow pattern is
stationary. In particular the region along the axis remains stable.
The only time-dependent feature is the neutral line exhibiting a
slowly variable wave structure.

Increasing (i) the total mass flow rate and (ii) also the stel-
lar wind to disk wind mass flow ratio will result in an almost
perfectly stationary flow (solution L5; see below). Having a sim-
ilar mass flow ratio, also the opening angle is similar to solution

S2. The stationarity of solution L5 will be investigated in more
detail below.

The blobs (or rather tori) generated in simulation S2 move
with pattern speed of about 0.1 the Keplerian speed atri. Their
size is about the inner disk radius but depends from the mass
flow ratio and the numerical resolution. We emphasize that due
to the knot size and time scale of knot formation in our simula-
tion, their connection with the jet knots observed in protostellar
jets on the large scale distance of tens of AU is questionable.
This statement also holds for comparable structures observed in
similar simulations presented in the literature (Ouyed & Pudritz
1997, Goodson et al. 1997, 1999; Goodson & Winglee 1999).

On the other hand, from the unstable character of the axial
flow together with the lack of collimation we may conclude that
the model configuration investigated in our paper is unlikely to
produce collimated jets. Furthermore, we hypothesize that this
behavior may be the one of the reasons why highly magnetized
star-disk systems – containing magnetic white dwarfs or neutron
stars – do not have jets.

In general, the maximum terminal poloidal velocity is of
the order of the Keplerian speed at the disk inner radius (see
Table 2). The speed is highest along the field lines from the gap
due to the low flow density. The axial flow speed is low. Its
mass density depends on the injection parameters and could be
relatively large (S4, L5) or low (L3, S2), but is generally less than
10% of the density at the inner disk radius. The maximum stellar
wind speed is reached along field lines with the largest opening
angle and is above the Keplerian speed at the disk inner radius
(Fig. 5). The same holds for the maximum disk wind speed.
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However, in this case the maximum speed is reached along the
field lines with a foot point at small radius. This is partly due
to length of the acceleration distance, partly due to the rapid
rotation of the disk material at small radii.

4.4.1. The question of dipolar accretion

In all our different simulation runs we never observe a signa-
ture of dipolar accretion as it is would be expected from models
of young stellar jet formation (e.g. Camenzind 1990, Shu et al.
1994). Instead, a magnetically driven wind develops from the
stellar surface. Note that this strong stellar outflow ispermitted
but not prescribedby the inflow boundary condition along the
star, since the inflow velocity is very low. We emphasize that
even in our simulation L1 for a non rotating star (Fendt & Elstner
1999), where no stellar wind can develop, no dipolar accretion
occurred. Therefore, we believe that it is not the boundary con-
dition which prevails the matter from falling from the disk to
the star. In fact, dipolar accretion has never been observed in
the literature of numerical MHD simulations considering the
star-disk interaction (e.g. Hayashi et al. 1996, Goodson et al.
1997, Miller & Stone 1997), but this might also be caused by
the comparatively short time evolution in those simulations.

We think that the main reason that hinders the dipolar ac-
cretion is the choice of the co-rotation radius equal to the inner
disk radius. Only disk material orbiting inside the co-rotation
radius could be accreted along the field lines.

It is clear that such an accretion process along converging
field lines is difficult to treat numerically. Certainly, this impor-
tant topic has to be investigated more deeply. We defer this to a
future paper.

4.4.2. The question of collimation

The quasi-stationary two-component outflow obtained in our
simulations shows almostno indication for collimation. This
seems to be in contradiction to the literature (OP97, Romanova
et al. 1997). However, the non-collimation of the flows can
be explained following the analysis of Heyvaerts & Norman
(1989). They have shown that only jets carrying a net poloidal
current will collimate to a cylindrical shape. However, in our
case we have an initially dipole type magnetosphere and the
final state of a spherically radial outflow enclosing a neutral
line with a poloidal magnetic field reversal. The toroidal field
reversal also implies a reversal of the poloidal current density
with only a weaknetpoloidal current. In such a configuration, a
self-collimation of the flow as obtained by OP97 or Romanova
et al. (1997) cannot be achieved. In both of these publications a
net poloidal current flows along themonotoniccallydistributed
field lines.

One might expect to obtain the OP97 results of a collimat-
ing jet as a limiting case in the present simulations, just due to
the fact that the inflow boundary condition along the disk is the
same as in their setup. However, we think that this is not possible
since the initial field structure and, thus, the flux distribution in
the lower boundary is completely different. A combination of

the OP97 field distribution together with a central dipole might
do the job. Still, the problem would be the very different field
strength of both components, since the dipolar field will de-
crease by a factor of 10–50 towards the inner disk radius. Thus,
the stellar field is always dominating the numerical simulation.
We defer the treatment of such a completely new numerical
setup to a future paper.

Apart from this argument concerning a flow self-collimation
we mention the hypothesis raised by Spruit et al. (1997) claiming
that a “poloidal collimation” is responsible for the jet structure.
Such a poloidal collimation would rely on the magnetic pressure
onto the jet flow from the disk magnetic fieldoutsidethe jet.
Their condition for poloidal collimation, a disk magnetic field
distributionBP ∼ r−q with q ≤ 1.3, is clearly not satisfied
in our case of a dipole type field distribution along the disk
(which is conserved from the initial condition because of flux
conservation). For a dynamo generated field in the disk this
condition is satisfied (R̈udiger et al. 1995). This holds also for
the disk field distribution of OP97. In this sense, our simulations
are consistent with Spruit et al. (1997), although we do not
argue that our results support their hypothesis that “poloidal
collimation” is the main process to produce jets.

We further note the results of Ustyugova et al. (1999) who
claim that the shape of the numerical box influences the degree
of collimation. A rectangular box extended along the symme-
try axis would lead to an artificial flow collimation, whereas
a quadratic box simulation (as used in our simulation) did not
result in a collimated structure. A recent study by Okamoto
(1999) also has raised strong arguments against a MHD self-
collimation. In particular, he claims thatelectric current-closure
will inhibit a self-collimation, a point which is not always con-
sidered in MHD jet models. Current-closure, however, is satis-
fied in our model due to the reversed dipole type initial field.

Nevertheless, strongly collimated astrophysical jet flows are
observed. For the moment we speculate that an increase of the
disk field strengthwould probably enhance the degree of col-
limation. So far we doubt whether an increase of the size of
the computational box will be sufficient, because in our model
the field distribution and mass flow rate decrease strongly with
radius.

4.4.3. The final steady state - application of stationary MHD

It is well known from standard MHD theory that an axisymmet-
ric stationary MHD flow is defined by five integrals of motion
along the magnetic flux functionΨ(r, z) ≡ 2π

∫
BP · dA. Sta-

tionarity implies the following conserved quantities along the
flux surfaceΨ: The mass flow rate per flux surface,η(Ψ) ≡
sign(vP · BP) ρvP/BP, the iso-rotation parameterΩF(Ψ) ≡
(vφ − ηBφ/ρ)/r, the total angular momentum density per flux
surface,L(Ψ) ≡ r(vφ − Bφ/η), and the total energy density
E(Ψ). Therefore, for a time-dependent axisymmetric simula-
tion evolving into a stationary state, these functions must be
constant along the field lines. Fig. 8 demonstrates such a behav-
ior for the example solution L5 for the quantitiesη(Ψ),ΩF(Ψ)
andL(Ψ). An overlay of each of these functions with the con-
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Fig. 8. Properties of the stationary final state for the example solution
L5. The time step ist = 200 when a stationary state has been reached.
Conserved quantities of stationary MHD: magnetic flux functionΨ
(poloidal field lines), mass flux per flux surfaceη(r, z) ≡ η(Ψ), the iso-
rotation parameterΩF (r, z) ≡ ΩF (Ψ), the total angular momentum
L(r, z) ≡ L(Ψ). Density distributionρ(r, z), poloidal electric current
jp(r, z), angular velocityΩ(r, z), toroidal magnetic field strengthBφ

(positive (negative) values outside (inside) the neutral layer), vectors of
poloidal Lorentz forceFL,p(r, z)and Lorentz force component parallel
to the poloidal field linesFL,||(r, z). (Vectors are normalized to unity).

tour plot of the field linesΨ(r, z) would show that the contours
are perfectly ‘parallel’. This clearly proves the stationary char-
acter of the final state of simulation L5. For comparison, Fig. 8
shows the distribution of the poloidal electric current density, the
toroidal magnetic field, and the angular velocity of the plasma.

For a stationary solution it is interesting to investigate the
Lorentz force projected parallel and perpendicular to the field
lines. The poloidal Lorentz force vectors (Fig. 8) show that in
the region of the highest poloidal velocities, the Lorentz force
is more or less aligned with the field lines. In the region of low
poloidal velocity the main component of the Lorentz force is per-
pendicular to the field lines. As discussed above (Sect. 4.4.2.)
the perpendicular component of the Lorentz force acts colli-
mating inside the neutral layer and de-collimating outside the
neutral layer.

Another interesting feature is thedirection of the parallel
component of the Lorentz force (see Fig. 8). Close to the disk
boundary there is a region where this component changes sign
and the Lorentz force is thereforedeceleratingthe matter1. This

1 In Fig. 8, this region is only one vector element wide. However, a
better resolution shows that this region extends to aboutz = 1 along
the outer disk

demonstrates that in the stationary final state the Lorentz force
is not the main driving mechanism of the disk material from the
disk into the corona. It is only at a larger height above the disk
that the parallel component of the Lorentz force accelerates the
plasma.

As a summary of this section we show in Fig. 9 the final
stationary state of the example solution L5 plotted for all four
hemispheres. This figure (and only this one) isrotated by90◦

with the z-axis in vertical direction. This gives a comparative
look how the simulation has evolved from the initial dipolar
structure to the spherically radial outflow final state.

5. Summary

We have performed numerical simulations of the evolution of a
stellar dipole type magnetosphere in interaction with a Keple-
rian accretion disk using the ideal MHD ZEUS-3D code in the
axisymmetry option. The simulations are lasting over hundreds
(or even thousands) of rotational periods of the inner disk. The
central star is rotating with a co-rotation radius chosen as the
disk inner radius. A smooth mass inflow is prescribed into the
corona which is initially in hydrostatic equilibrium. The initial
dipole type magnetic field distribution is force-free. The density
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Fig. 9. Density distribution and poloidal
magnetic field lines of simulation L5 for
initial time step (left) and for the final sta-
tionary state (right) plotted for all four
hemispheres.

and velocity profile as well as the magnetic field profile along the
inflow boundary has not been changed during the computation.

Our main results are summarized as follows.

(1) The initial dipolar field breaks up by a combined action of
the winding-up process due to differential rotation between
the star and disk and the wind mass loss from star and disk.
‘Stellar’ and ‘disk’ field lines remain disconnected after the
disrupting ‘bubble’ has left the computational grid.

(2) A two-component MHD wind leaves both the disk and the
rotating star moving away in radial direction. The two com-
ponents are divided by a neutral field line. The magnetic
field direction (both, poloidal and toroidal) is positive out-
side the neutral line and negative inside. This field reversal
is a characteristic difference from jet simulations of OP97
and Romanova et al. 1997.

(3) Mainly dependent on the wind mass flow rates a stationary
or quasi-stationary state evolves after hundreds or thousands
of inner disk rotations. The disk wind always evolves into a
stationary state. A high stellar wind mass loss rate supports
‘complete stationarity’, i.e. stationarity also for the stellar
wind component.

(4) The initial driving mechanism of the disk wind are centrifu-
gal forces of the rotation matter leaving the disk in vertical
direction. At larger heights above the disk, this matter be-
comes magnetically accelerated. The maximum flow speed
is about the Keplerian velocity at the inner disk radius. The
hight speed is observed in the outer layers of the stellar wind
and in the upper layers of the disk wind.

(5) Depending on the stellar wind mass flow rate, knots may
form along the symmetry axis. The size of these knots is
about the inner disk radius, but also depends weakly on the
grid resolution. The knot pattern velocity is about 10% of the
Keplerian speed at the disk inner radius. The full opening
angle of ‘knot flow‘ is about 30◦to 50◦. Concerning the
knot’s size and spacing, it is unlikely that these features are
correlated to the observed knots in protostellar jets, but may
be connected to QPO’s in X-ray binaries.

(6) There is almost no indication for a flow self-collimation.
The flow structure remains more or less conical. We believe
that the main reason for the lack of collimation is the field
reversal between stellar and disk wind also implying a re-
versal in the poloidal current density. Thus, the net poloidal
current will be weak. This is a major difference to OP97 and
Romanova et al. 1997. However, this result could also inter-
preted in terms of a missing poloidal collimation mechanism
proposed by Spruit et al. (1997).

(7) No signature of an accretion stream along a dipolar field
channel towards stellar surface is observed. This may be due
to the fact that the dipolar field has completely disappeared
or due to our choice of the co-rotation radius.

Our results are in general applicable to any star-disk system
which is coupled by magnetic fields. One critical aspect may be
that we assume a fixed boundary condition for the magnetic field
in the disk. However, if the field structure in the corona changes
as drastically as we have shown, this might influence also the
magnetic flux distribution in the disk. But then, for a proper time-
dependent disk boundary condition, the disk structure should
be treated in a more detailed manner. This however, is beyond
the scope of the present paper. From our results we like to put
forward the following main hypotheses.

(8) Star-disk systems are supposed to have a two component
wind/jet structure.

(9) A strong stellar field (equivalent to a low stellar mass loss
rate) leads to instabilities along the rotational axis. A strong
and stable jet is unlikely in such objects. This may be one
reason why highly magnetized stars with disks like neutron
stars or magnetic white dwarfs donothave jets. A disk field
generated by a turbulent dynamo could be a better candidate
for driving the jet.

(10) The current model of magnetized accretion in young stars
along dipolar field lines from disk to star have to be re-
considered. The magnetospheric structure often inferred
from stationary models (Camenzind 1990; Shu et al. 1994)
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Fig. A.1..Numerical test example. Re-calculation of the OP97 jet model. Fromleft to right: Poloidal magnetic field lines, density contours, and
poloidal velocity vectors att = 100, calculated withβi = 0.28. The location of the shock front is the same for all three plots (in difference to
OP97).

may completely change if the time-dependent evolution is
considered.
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Appendix A: numerical tests

Here, we will discuss numerical test solutions. The first test
example is the recalculation of the OP97 solution of an axisym-
metric jet propagating from a rotating Keplerian disk. Such a
scenario is similar to the one treated in the present paper, how-
ever, with a parabolic-type initial potential field configuration
and without a central rotating star. Fig. A.1 shows the result of
our simulation att = 100. At this time the jet bow shock has
traveled 52 units along the z-axis. In the long-term evolution,
the location of the magneto-sonic surfaces agrees with the re-
sults of OP97. However, as a (minor) difference we note that
for our test simulations fitting to the OP97 results the value
for the plasma-beta is smaller by about a factor of

√
4π com-

pared to OP97. We use the original ZEUS code normalized with
Pgas ∼ B2/2 (instead of the usualPgas ∼ B2/8π) (user man-
ual). Therefore, in order to match the definition of the plasma
beta asβi = 8πPi/B2

i , one must define the field strength prop-
erly (this gives a factor of

√
4π in the field strength). Thus, the

difference in theβi may be due to a different normalization ap-
plied in OP97 (Ouyed 2000, private communication). We have
deduced this factor bycomparing both simulations. Addition-
ally, it becomes understandable with the normalization of the
ZEUS code magnetic field. Forβi = 1.0 in our simulations the
jet solution is appropriate slower, reaching onlyz = 42 after
100 time steps2. Concluding that our recalculation of the OP97

2 This is, by the way, remarkably similar to the location of the shock
front in the velocity plot (Fig. 6) in OP97, which is different from the
one in their density plot (Fig. 3). However, we note that a ‘wrong’
plasma-beta must be visible in the location of the magneto-sonic sur-
faces. This is not the case. Therefore, we conclude the differences in
βi are just due to a different field normalization in the actual codes

Fig. A.2. Numerical test example. Solution L1 without stellar rotation.
Overlay of a couple of initial time steps (att = 0, 10, 20, 30, 40, 50).
Poloidal magnetic field lines (top) and density contours (bottom). Thick
lines indicate the initial distributions. The solutions perfectly match in
the regions not yet disturbed by the inflow boundary condition. The
long term evolution of this solution is shown in FE99.

model was successful, we note however the tiny ‘wave’ pattern
of our density contours (Fig. A.1). This wave pattern is present
only in the hydrodynamic variables, but not in the magnetic
field. These density variations are less then 10%.
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As a second example for a numerical test, we show an over-
lay of the density contours and poloidal field lines of six initial
time steps of the simulation L1,before the torsional Alfv́en
wave has passed the outer (upper) grid boundary. It can be seen
that upstream of the bow shock front the magneto-hydrostatic
initial condition remains in perfect equilibrium. Thus, force-
freeness of the initial magnetic field as well as the hydrostatic
equilibrium is satisfied with good accuracy. Without the inflow
boundary condition atz = 0 the initial equilibrium will remain
unchanged.
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