The feedback-regulated growth of supermassive black holes

Martin Haehnelt

European Research Council

A luminous quasar with a redshift of z = 7.085

Daniel J. Mortlock¹, Stephen J. Warren¹, Bram P. Venemans², Mitesh Patel¹, Paul C. Hewett³, Richard G. McMahon³, Chris Simpson⁴, Tom Theuns^{5,6}, Eduardo A. Gonzáles-Solares³, Andy Adamson⁷, Simon Dye⁸, Nigel C. Hambly⁹, Paul Hirst¹⁰, Mike J. Irwin³, Ernst Kuiper¹¹, Andy Lawrence⁹ and Huub J. A. Röttgering¹¹ 2500 from finally 4500 sq deg with UKIDSS!

"Maximum" SMBH Masses

e-folding (Edd) time: M/(dM/dt) = 4 (ε/0.1) 10⁷yr Age of universe (z=6-7) (0.8 - 1) x 10⁹ yr

Must start early!

Accretion rate must keep up w/ Eddington at all times

Obvious alternatives: (1) grow faster or (2) merge many BHs

Masses estimated from: Fan et al. (2006); Willott et al. (2010); Mortlock et al. (2011)

slide from Zoltan Haiman

Massive seed black holes?

The environment of bright QSOs at $z \sim 6$: Star forming galaxies and X-ray emission

Tiago Costa^{1*}, Debora Sijacki^{1,2}, Michele Trenti¹ and Martin G. Haehnelt¹ ¹ Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK ² Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA

Average density

Heidelberg, 30 June 2016

Intermediate overdensity

"Most massive" halo

Billion solar mass black holes only form in highly overdense regions.

Early growth of the most massive black holes

Two phases:

- 1. Eddington limited growth
- 2. Intermittent feedback limited growth

This assumes massive seed black holes!

Costa et al. 2013 Sijacki et al. 2009

Correlation of dynamically measured BH mass M_{\bullet} with (*left*) K-band absolute magnitude $M_{\rm K, bulge}$ and luminosity $L_{K, bulge}$ and (*right*) velocity dispersion σ_e for (*red*) classical bulges and (*black*) elliptical galaxies. The lines are symmetric least-squares fits to all the points except the monsters (*points in light colors*), NGC 3842, and NGC 4889. Figure 17 shows this fit with 1- σ error bars.

Self-regulation? "Co-Evolution"

The need for (negative) feedback

Theoretical expectations:

SNe feedback:

removes baryons from galaxies and reduce SF efficiency in low mass galaxies

AGN feedback:

- prevents overgrowth of massive galaxies
- invoked for the M_{BH} - M_{star} relation
- explains red-and-dead
 properties of local ellipticals

What is going on in the simulations? Is it the correct physics?

Heidelberg, 30 June 2016

Sijacki et al. 2015

Does the feedback self-regulate the black hole growth?

Where does the feedback couple:

- in the dark matter halo?
- in the galaxy?

How much of this is numerically sound?

How do we get massive seed black holes?

2 h⁻¹ cMpc

Feedback regulated growth super-Eddington growth? AGN-driven outflows

First evidence of quasar-mode feedback in local quasars achieved only recently

slide from Roberto Maiolino

AGN-driven molecular outflows in local ULIRGs

Cicone et al 2013

$L_{kin} \sim 0.05 L_{AGN}$

 $v_{outflow} (dM_{H2}/dt)_{outflow} \sim 20 L_{AGN}/c$

Feedback from Active Galactic Nuclei: Energy- versus momentum-driving

Tiago Costa*, Debora Sijacki and Martin G. Haehnelt Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA

Momentum vs energy-driven outflows from AGN

The $M_{bh} - \sigma$ relation in the initially momentum-driven King model

Equation of motion for shell:
$$\underline{L}_{edd}$$

 c
 $\frac{d\left[M_{shell}(R)\dot{R}\right]}{dt} = 4\pi R^2 P - \frac{GM_{shell}(R)M_{tot}(< R)}{R^2}$

For isothermal halo with velocity dispersion σ :

$$\frac{d\left(R\dot{R}\right)}{dt} = -2\sigma^{2}\left(1 - \frac{M_{\rm BH}}{M_{\sigma}}\right) - \frac{GM_{\rm BH}}{R}$$

Gas is unbound for:

$$M_{\rm bh} \ge M_{\sigma} = \frac{f_{\rm gas}\kappa}{\pi G^2} \sigma^4 \sim 3 \,\mathrm{x} 10^8 \,\mathrm{M_{\odot}} \,(\sigma/200 \,\mathrm{km s^{-1}})^4$$

Gives the right slope and normalization!

Correlation of dynamically measured BH mass M_{\bullet} with (*left*) K-band absolute magnitude $M_{\rm K,bulge}$ and luminosity $L_{K,bulge}$ and (*right*) velocity dispersion σ_e for (*red*) classical bulges and (*black*) elliptical galaxies. The lines are symmetric least-squares fits to all the points except the monsters (*points in light colors*), NGC 3842, and NGC 4889. Figure 17 shows this fit with 1- σ error bars.

Self-regulation? "Co-Evolution"

Spherical haloes filled with gas in hydrostatic equilibrium simulated with AREPO

The hydrodynamical simulation reproduce the analytical solutions well The differences are well understood and physical. But this is a for a spherical halo with gas in hydrostatic equilibrium. Heidelberg, 30 June 2016

erc

European Research Council

The infalling and cooling gas in cosmological simulation significantly reduces the effect of AGN feedback. The outflows become bipolar preferentially escaping into the voids and avoiding the filamentary inflows. A momentum Heidelberg, 30 June 2016 flow of L_{edd}/c falls short by a factor ~10.

 $10-20L_{Edd}/c$ are required strongly favouring an energy-driven outflow on galactic scales. The amount of entrained cold gas is very sensitive to the cooling properties. In cosmological environment there are no thin shells.

Heidelberg, 30 June 2016

at R_{vir} at 0.1R_{vir} z = 6.4 (r = 1.0 Rvir)z= 6.4 (r=0.1 Rvir) 4.0 log p V, r² [M , yr¹ sr¹] 4.0 log p V, r2 [M yr' sr'] -2.0 z= 6.2 (r=1.0 Rvir) z= 6.2 (r=0.1 Rvir) 4.0 log p V, r² [M_{sun} yr¹ sr¹] 4.0 log p V, r² [M , yr⁻¹ sr z= 6.0 (r=1.0 Rvir) z= 6.0 (r=0.1 Rvir) 4.0 log p V, r2 [M., yr1 sr1] 4.0 log p V, r2 [M., yr1 sr1] -2.0

- The inflows cover a small solid angle. This makes AGN feedback inefficient.
- Thermal energy input of 5% L_{edd} does the job.
- The kinetic energy of the inner ultra-fast outflow has to be thermalized while the outflow velocity is still fast and the mass loading is still low.

angular distribution of mass inflow rates (in M_{\odot} yr⁻¹sr⁻¹)

Dubois et al 12

Can we observationally test this further? Yes, with spatially resolved spectroscopy.

Heidelberg, 30 June 2016

slide from Roberto Maiolino

The fast cold outflow reaches a (projected) distance of 30kpc.

Fast cold gas in hot AGN outflows

Tiago Costa^{*}, Debora Sijacki and Martin G. Haehnelt Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

The role of SN vs AGN feedback

Gas pre-enriched with metals by SN feedback is entrained in hot AGN Heidelberg, 30 June 2016 outflow and cools to form cold outflow.

erc

European Research Council

Heidelberg, 30 June 2016

Outflows Driven by Quasars in High-Redshift Galaxies with Radiation Hydrodynamics

Rebekka Bieri¹*, Yohan Dubois¹, Joakim Rosdahl², Alexander Wagner³, Joseph Silk^{1,4,5,6}, and Gary A. Mamon¹

Summary

- feedback-regulated growth of supermassive black holes phenomonologically reasonably well understood
- $> \sim 10-20 L_{edd}/c$ required for efficient feedback
- AGN driven galactic winds appear to be energy driven hot winds with significant amounts of cooling out of entrained cold gas metal-enriched by SN feedback

