NEW LIGHT ON HYDROGEN AND HELIUM REIONIZATION IN A COSMOLOGICAL VOLUME

Marius B. Eide Max Planck Institute for Astrophysics, Garching

With:

P. Busch (MPA), B. Ciardi (MPA), M. Glatzle (MPA), L. Graziani (INAF Rome), K. Kakiichi (MPA) and D. Vrbanec (MPA)

1

29 June 2016 — Illuminating the Dark Ages, Heidelberg

• Motivation:

The role of galaxies, QSOs and X-ray binaries in H and He reioinization

• Method:

The Massive-Crash simulations: 3D hydrodynamic + radiative transfer simulations

• Preliminary results:

Galaxies and QSOs dominate on different scales

MOTIVATION

FOR THE

MASSIVE-CRASH SIMULATIONS

MOTIVATION: IGM REIONIZATION BY GALAXIES, QSOS AND XRBS

1.

Reionization has happened

Fan et al. (2006) and Dijkstra (2014)

2.

Galaxies – QSOs – X-ray binaries – hot ISM X-rays —their role and importance in H and He reionization? Bright, faint, hard, soft and clustered sources

Eg. Haiman and Loeb 1998; Furlanetto 2006; Mineo et al. 2012a; Mineo et al. 2012b; Fragos et al. 2013; Fialkov et al.

2014; Pacucci et al. 2014; Giallongo et al. 2015; Madau and Haardt 2015; Bouwens et al. 2015

3.

Origin of sources and environment: MassiveBlack II simulation —need to track ionising photons from them: CRASH

4.

Massive-Crash happens

METHODS

OF THE

MASSIVE-CRASH SIMULATIONS

METHOD: UNDERLYING COSMOLOGICAL SIMULATION

MassiveBlack II Khandai et al. (2015)

- Hydrodynamic simulation, baryonic physics
- Volume: (100 cMpc/h)³
- $\cdot\,$ Mass resolution: $\sim 10^6\,M_\odot$
- + Black hole growth and feedback from $5\times 10^5 M_\odot$ seeds
- Subgrid models: star formation and supernova feedback

METHOD: RADIATIVE POST-PROCESSING WITH CRASH

CRASH

Eg. Graziani et al. (2013)

- Using gridded input data from MassiveBlack II at 15 redshifts
- z = 20 to z = 4.5
- Tracking ionizing photon packets w/ 128 frequency bins 13.6 eV—2 keV
- Current runs: 256³ grid, will upscale to 512³: ~ 200 kPc/h resoluton
- Different sources: different spectra

QSOs: Not contributing significantly until z ~ 7

XRBs:

Orders of magnitude fewer photons – ubiquitous X-ray background?

QUASAR LUMINOSITY FUNCTION

QLF comparison at $z \sim 6$ against Giallongo et al. (2015)

QSOs: Not contributing significantly until z ~ 7

XRBs:

Orders of magnitude fewer photons – ubiquitous X-ray background?

PRELIMINARY RESULTS

FROM THE

MASSIVE-CRASH SIMULATIONS

RESULTS: TRACKING THE STATE OF THE IGM - WITHOUT QSOS

13

RESULTS: TRACKING THE STATE OF THE IGM - WITH QSOS

14

RESULTS: TRACKING THE STATE OF THE IGM - WITH QSOS AND XRBS

results: zooming in on a z = 10 qso

XRBs: increases temperature, $n_{\rm HeIII}$ slightly

RESULTS: IGM PHASE (NO QSOS) - HYDROGEN

RESULTS: IGM PHASE (WITH QSOS) - HYDROGEN

RESULTS: IGM PHASE (WITH QSOS) - HYDROGEN

RESULTS: IGM PHASE (NO QSOS) - HELIUM

RESULTS: IGM PHASE (WITH QSOS) - HELIUM

RESULTS: SCALE OF STRUCTURES – STACKED POWER SPECTRA (3/3)

CONCLUSIONS AND IMMEDIATE OUTLOOK

- Galaxies and QSOs leave their **imprint at different scales** globally larger differences at lower z?
- HeIII (ion. erg. 54.4 eV) good indicator of X-ray activity
- Sources with different properties contribute **in concert** to the heating and ionization of the IGM *K. Kakiichi*
- But what about the XRBs? Contribute to heating significant imprint on topology or only slight change in temperature?
- Impact on 21 cm signal? D. Vrbanec
- QSOs wash out smaller structures of IGM *IGM* morphology and percolation: P. Busch