Constraining the Epoch of Reionization with the Lyman- α Forest and Planck

Jose Oñorbe

Max Planck Institute for Astronomy (onorbe@mpia.de)

Collaborators: J. Hennawi (MPIA), Z. Lukić (LBNL), A. Rorai (IoA), G. Kulkarni (IoA)

June 28, 2016 Illuminating the Dark Ages, Heidelberg

The CMB Constraints on Reionization

Reionization Sets Up the Thermal State of the IGM

• Balance of photoheating and adiabatic cooling gives a $T - \Delta$ relationship: $T(\Delta) = T_0 \Delta^{\gamma-1}$ (Hui & Gnedin, 1997)

- Study the reionization history
- ② Constrain the thermal injection from ionizing sources
- ${f \Im}$ ${\cal T}_{
 m IGM}$ determines galaxy formation $({\it M}_{
 m halo,min})$

The Thermal History of the Universe: Jeans Scale

- Gas traces large-scale distribution of dark matter, but small-scale fluctuations suppressed by pressure: $\lambda_{Jeans} = c_s \sqrt{\pi/G\rho} \sim 200 ckpc$
- At IGM densities, the sound crossing time $\lambda_J/c_s \sim t_H$ Hubble time \rightarrow pressure scale depends on the full thermal history: $\lambda \propto \int f(T[z])dz$ (Gnedin & Hui 1998)

Thermal Parameters Affect the Lyman- α Statistics

Thermal Parameters Affect the Lyman- α Statistics

Simulating the Lyman- α Forest

Density

Temperature

Lya Flux

- Low density hydro + gravity, CMB gives initial conditions
- Nyx massively parallel grid hydro code (Almgren+ 2013; Lukic+ 2015). A 2048³ 40 Mpc/h run costs $\sim 5\times 10^5$ cpu-hrs
- Specific model of reionization (UV Background, Haardt & Madau 2012, Faucher-Giguere+2009)

Simulating Self-Consistent Reionization Histories

Input free parameters for the reionization model

1) Ionization History: $x_e(z) \sim z_{reion}$, Δz 2) Total Heat Injection: ΔT

Tables publicly available for your favorite hydro code

Simulating Self-Consistent Reionization Histories

Input free parameters for the reionization model

1) Ionization History:
$$x_e(z) \sim z_{reion}$$
, Δz
2) Total Heat Injection: ΔT

Tables publicly available for your favorite hydro code

Simulating Self-Consistent Reionization Histories

Input free parameters for the reionization model

- 1) Ionization History: $x_e(z) \sim z_{reion}, \Delta z$
- 2) Total Heat Injection: $\Delta T \Leftrightarrow$ spectral slope of reion. sources

Tables publicly available for your favorite hydro code

New Planck Constraints and Lyman- α Statistics at High-z (Oñorbe+ in prep)

Planck 2016 τ_e value, $\Delta T_{HI} = 2 \times 10^4$ K

New Planck Constraints and Lyman- α Statistics at High-z (Oñorbe+ in prep)

Same ionization history, different heat injection during HI reionization (spectral slope of the sources)

New Planck Constraints and Lyman- α Statistics at High-z (Oñorbe+ in prep)

Same HI heat input, different ionization history

HI Reionization Constraints from z = 5 Lyman- α (Oñorbe+ in prep.) See also F. Nasir+2016 & poster!

HI Reionization Constraints from z = 5 Lyman- α (Oñorbe+ in prep.) See also F. Nasir+2016 & poster!

z = 5 observations point towards a hotter IGM (higher heat input during HI reionization)

HI Reionization Constraints from z = 5 Lyman- α (Oñorbe+ in prep.) See also F. Nasir+2016 & poster!

z = 5 observations point towards a hotter IGM or an earlier reionization ($\sim 2\sigma$ from Planck)

At $z \sim 6$ Differences in the IGM Are Bigger

Easier to distinguish between thermal histories

Mock: 20 quasars $\Delta z = 0.2$ each; S/N= 10/pixel; $\langle \tau_{\rm eff,HI} \rangle = 4.0$

Mock: 20 quasars $\Delta z = 0.2$ each; S/N= 10/pixel; $\langle \tau_{\rm eff,HI} \rangle = 4.5$

Mock: 20 quasars $\Delta z = 0.2$ each; S/N= 40/pixel; $\langle \tau_{\rm eff,HI} \rangle = 6.5$

Degeneracy with Cosmological Parameters

Warm Dark matter degenerated with IGM thermal properties but very different evolution

Take Away Messages

- O The Lyman-α forest at high-z allows us to study the thermal state of the IGM ⇒ HI reionization
- **2** z = 5 Lyman- α 1D Power spectrum points towards higher IGM temperatures or higher τ_e values (but 2σ away from Planck constraints).

- A z = 6 measurement is doable using current facilities and will be very helpful to clarify this picture.
- Lower warm dark matter mass has the same physical effect as a hotter IGM (or earlier reionization) but different redshift evolution.

Degeneracy with Cosmological Parameters

Degeneracy with Warm Dark Matter

