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A highly reflective sail provides a way to propel a spacecraft out of the solar system using solar
radiation pressure. The closer the spacecraft is to the Sun when it starts its outward journey, the
larger the radiation pressure and so the larger the final velocity. For a spacecraft starting on the
Earth’s orbit, closer proximity can be achieved via a retrograde impulse from a rocket engine. The
sail is then deployed at the closest approach to the Sun. Employing the so-called Oberth effect, a
second, prograde, impulse at closest approach will raise the final velocity further. Here I investigate
how a fixed total impulse (∆v) can best be distributed in this procedure to maximize the sail’s
velocity at infinity. Once ∆v exceeds a threshold that depends on the lightness number of the sail (a
measure of its sun-induced acceleration), the best strategy is to use all of the ∆v in the retrograde
impulse to dive as close as possible to the Sun. Below the threshold the best strategy is to use
all of the ∆v in the prograde impulse and thus not to dive at all. Although larger velocities can
be achieved with multi-stage impulsive transfers, this study shows some interesting and perhaps
counter-intuitive consequences of combining impulses with solar sails.

I. INTRODUCTION

Sailing on the Earth uses the pressure of the wind to
propel a vehicle such as a ship. The pressure come from
material particles, namely air molecules, imparting mo-
mentum on the sail. Photons also possess momentum
and therefore exert pressure, and these too can be used
to propel a vehicle. The pressure is much smaller, how-
ever, and it can only be used as an effective means of
propulsion in the near-vacuum of space.

A photon of momentum p has energy E = pc, where
c is the speed of light. As force equals rate of change
of momentum, the force exerted by a photon hitting a
surface is Ė/c. If a beam of photons of intensity I is

incident on a surface of area A, then Ė = IA so the
pressure on that surface is I/c. This assumes the photons
are absorbed. If they are instead perfectly reflected the
pressure is 2I/c. This is a small number: The intensity
of the Sun incident on the top of the Earth’s atmosphere
is about 1370 W m−2, so photons reflected from a surface
normal to the Sun’s direction generate a pressure of just
9.1µPa. Yet if we build a low mass spacecraft with a
large reflecting surface, the resulting acceleration is non-
negligible, and as it is continuous, large velocities can
be achieved. For example, if this pressure acted on a
100 m2 sail of 1 kg mass, the sail’s velocity would change
by 80 m/s after one day (neglecting gravity). This is the
principle of a solar sail.

Solar sails are attractive because they free the space-
craft from having to carry propellant. It is an un-
avoidable consequence of the rocket equation1,2 that the
amount of propellant a rocket must carry to change its
velocity by ∆v increases exponentially with ∆v. The rea-
son is that most of the propellant is used to accelerate
the unused propellant.

Solar sails are being considered as a way to explore
the solar system.3,4 A few prototypes have in fact been
built and launched, after having been brought above the
Earth’s atmosphere by a conventional rocket. Of particu-
lar interest is the Japanese mission IKAROS which used
a 200 m2 sail of 16 kg mass. It was launched in 2010 and
flew past Venus, and is so far the only solar sail to have
left Earth’s orbit.5 Solar sails are particularly interesting
for missions that require a large ∆v over a long duration,
or that involve many maneuvers. As sails provide con-
tinuous thrust, and can be tilted so that the net force
on them is no longer directed along the line to the Sun,
they can produce non-Keplerian orbits, enabling trajec-
tories that would be much more expensive to attain with
impulsive rocket maneuvers. Solar sails have also been
investigated as a source of thrust for deep space and inter-
stellar missions.6,7 Although the radiation pressure from
the Sun drops with the inverse square of the distance
from the Sun, so does its gravitational pull, so that if a
solar sail is light enough it can escape the Sun’s potential
without any additional assistance.

It is this final application of solar sails – attaining the
largest possible velocity at infinity – that we will inves-
tigate here. A large asymptotic velocity is paramount if
we want to travel to the outer solar system or interstellar
space in the shortest time possible. We start from the
realization that if a sail began its outward journey closer
to the Sun than the Earth, it would gain extra acceler-
ation due to the higher solar intensity in the first part
of its journey, and so would achieve a larger velocity at
infinity.3,8 But a spacecraft starting from a circular orbit
of 1 au radius (1 astronomical unit, the mean Earth–Sun
distance) would require an impulse in order to approach
the Sun. One way to achieve this is to use a rocket to
apply a retrograde boost to decelerate the spacecraft by
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∆v. This will put the spacecraft on an elliptical orbit
that “dives” closer to the Sun (the larger ∆v, the closer
the approach). Once the spacecraft reaches perihelion
it opens its sail and uses radiation pressure to sail away
from the Sun. But assuming that we have a fixed budget
of ∆v available to change the velocity of the spacecraft,
is the best strategy to use all of this to dive as close to
the Sun as possible? The so-called Oberth effect, ex-
plained in section II B, shows that applying the ∆v when
the spacecraft is moving faster transfers more kinetic en-
ergy to the spacecraft than when it is moving slower.9

This suggests that it might be better to save some of the
available ∆v for a prograde boost at perihelion, which is
when the spacecraft is moving fastest.

We explore this scenario as a means of providing in-
sight into the mechanics of solar sails and the use of im-
pulsive boosts. The goal is not to identify the optimal
set of orbital transfers that achieve the largest asymptotic
velocity for a spacecraft. Such problems have been ad-
dressed in other articles and books.3,4,8 Indeed, because
sails can provide a continuous, variable, and non-central
thrust, their orbits can be very complex, so we generally
need sophisticated procedures and numerical methods to
find the optimal trajectory for a given purpose. This
article provides instead an introduction to the topic by
focusing on single-transfer orbits and analytic solutions,
a topic that has not been covered comprehensively by
other works. Some of the results are counter-intuitive,
thereby providing insight into both Keplerian orbits and
solar sails. Broad introductions to solar sailing are pro-
vided by Vulpetti et al.4 and, at a deeper level, McInnes.3

We will make some simplifying assumptions. We as-
sume the sail is a perfect reflector, and that the Sun is a
point source that radiates isotropically. We will also ne-
glect the gravity of any body other than the Sun. In prac-
tice a spacecraft launched from the Earth would need to
escape the Earth’s gravity, yet there are an infinite num-
ber of solar orbits it could be placed on in that process,
each of which would require additional impulses. Con-
sidering these would be important in practice, but here
would only obfuscate the main issues.

It is well known from orbital mechanics that boosts
tangential to the orbit are more efficient at changing
the energy of the orbit than are boosts with a radial
component.1,10 For this reason we will only consider pro-
grade boosts – ones that increase the orbital velocity –
and retrograde boosts – ones that decrease the orbital
velocity. These boosts are assumed to be instantaneous.
All distances and velocities are relative to the Sun, ex-
cept for ∆v, which is the change in velocity relative to
the spacecraft’s instantaneous reference frame. Velocities
are non-relativistic, so a classical treatment suffices.

We first go over some background physics in section II,
before exploring the nominal sun diver scenario in sec-
tion III. Some variations on this are considered in sec-
tion IV.

II. BACKGROUND PHYSICS

A. Solar sails

We consider a sail with its normal kept pointed at the
Sun. As noted in the previous section, the pressure of
the solar photons is 2I/c, so the acceleration of a flat
solar sail of mass per unit area σ is a = 2I/cσ. The solar
intensity I drops off with the inverse square of the dis-
tance r from the Sun, so may be written I = Ls/4πr

2,
where Ls is the luminosity of the Sun (3.8×1026 W). We
can then write a = Ls/2πcσr

2. We will see momentar-
ily that it is convenient to express this acceleration as a
fraction of the local acceleration due to the Sun’s grav-
ity, g = µ/r2, where µ = GMs, Ms is the mass of the
Sun, and G is the gravitational constant. For orienta-
tion, g = 5.9× 10−3 m s−2 when r = 1 au. The ratio a/g
is called the lightness number of the sail, λ, and it follows
from the above that λ = Ls/2πcµσ. It is a property of
the spacecraft and the Sun only, and in particular is in-
dependent of r. The acceleration of the sail may now be
written a = λµ/r2.

It is interesting to note in passing that we obtain a = g,
i.e. λ = 1, when the mass per unit area of the sail is
σ = Ls/2πcµ. Numerically this is 1.5 × 10−3 kg m−2,
which is about ten times less than plastic food wrap. This
indicates how small the solar radiation pressure is, and
how light a solar sail needs to be to achieve an appreciable
acceleration.

The sail experiences two forces: (i) the radiation pres-
sure pushing it away from the Sun; (ii) gravity pulling it
towards the Sun. Using r to denote the position vector
of the sail relative to the Sun, and r̂ to denote its unit
vector, then from Newton’s second law the dynamical
equation of the sail is

r̈ = − µ
r2

r̂ +
λµ

r2
r̂ = −µ(1− λ)

r2
r̂ . (1)

This is the equation for Keplerian orbits in which the
standard gravitational parameter is µ(1− λ) as opposed
to µ. Thus for 0 < λ < 1 the effect of solar radiation
pressure is equivalent to lowering the gravitational mass
of the Sun. When λ = 1 there is no net force, so the sail
moves in a straight line or remains at rest. For λ > 1 the
net force is directed away from the Sun.

Consider a spacecraft initially on a circular orbit
around the Sun. What orbit does the spacecraft acquire
after it opens its sail and keeps its normal pointed at the
Sun? The sail will now be moving faster than the circular
orbital speed. For 0 < λ < 1/2 it is straightforward to
show that the spacecraft still has negative total energy,
so its orbit becomes an ellipse. For λ = 1/2 the total
energy is zero, so the orbit is a parabola and it will reach
infinity with zero velocity. For 1/2 < λ < 1 the total
energy is positive, so the orbit is a hyperbola and the
spacecraft is no longer bound to the Sun. For λ > 1 the
force is repulsive and the orbit is also a hyperbola, but
now with the Sun at the other focus.
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If a sail with λ ≥ 1/2 is initially at a distance ri from
the Sun with a velocity vi, what velocity does it achieve at
infinity (v∞)? As the force is conservative the direction
of vi is irrelevant, provided it is not directly towards the
Sun. Using conservation of energy we find

v2∞ = v2i +
2µ(λ− 1)

ri
. (2)

Clearly, the closer the sail is to the Sun initially, the
larger v∞ will be, provided vi and/or λ are large enough
to permit escape at all. This suggests that to maximize
v∞ we should maneuver our spacecraft close to the Sun
before opening its sail.

The lightness number λ is key to determining the ve-
locity that the sail can achieve. Sails launched to date
had small lightness numbers. The IKAROS5 solar sail
that went to Venus was primarily a technology demon-
strator with a lightness number below 0.01. LightSail 2,
deployed into Earth’s orbit in 2019 by a private organi-
zation (the Planetary Society),12 had a sail area of 32 m2

and mass of 5 kg, giving it a theoretical lightness num-
ber of 0.01. One of the interstellar exploration concepts6

proposes a 400 m diameter (125 000 m2 area) sail weigh-
ing just 100 kg. Together with a payload mass of 150 kg,
this implies a lightness number of 0.78.

B. Oberth effect

Consider a spacecraft travelling with a velocity vi in
some inertial reference frame S. The spacecraft’s (spe-
cific) kinetic energy is (1/2)|vi|2. If it uses its rockets to
increase its velocity by ∆v, its kinetic energy becomes
(1/2)|vi + ∆v|2. The increase in the spacecraft’s kinetic
energy is therefore (1/2)|∆v|2 + vi · ∆v. This is max-
imized when vi and ∆v are parallel and then increases
monotonically with increasing |vi|. That is, the faster
the spacecraft is moving initially, the larger the increase
in its kinetic energy for a given ∆v. Even though the
spacecraft expends the same amount of energy in its rest
frame to produce a given ∆v, independent of vi, more
of this energy goes into the kinetic energy of the space-
craft in S – and thus less into the kinetic energy of the
propellant – the faster the spacecraft is moving in S.

This observation can be exploited by a spacecraft to
optimize the use of rocket propellant to escape from a
gravitational field. If a spacecraft is on an elliptical or-
bit, then while its energy (kinetic plus potential) is con-
served along the orbit, its velocity will vary, being largest
at periapsis.13 Thus we will maximize the increase in the
energy of the spacecraft if we apply the impulse ∆v at
periapsis. Specifically, we fire the rockets tangentially to
the orbit to increase its velocity – a prograde boost. This
principle of maximizing kinetic energy increase is some-
times known as the Oberth effect, after the pioneering
rocket scientist Hermann Oberth who first described it
in the 1920s.14 If a spacecraft has a velocity vi at a point
on an elliptical orbit that is a distance ri from the central

body, then if a prograde boost of ∆v is applied at periap-
sis where the velocity is vp, it is straightforward to show
that the velocity vf of the spacecraft when it returns to
ri (but now on a different orbit) is given by

v2f = v2i + (∆v)2
(

2vp
∆v

+ 1

)
. (3)

Clearly, the larger vp for given vi and ∆v, the larger vf .

III. SUN DIVER

Equations (2) and (3) suggest that we can maximize
the velocity of our spacecraft at infinity if we maneu-
ver our spacecraft as close to the Sun as possible before
opening its sail and/or applying a prograde boost. If our
spacecraft starts on a circular orbit of radius ri and veloc-
ity vi, we can use a retrograde boost to lower the orbital
velocity and thus drop into an elliptical orbit with peri-
helion less than ri. This is the classic Hohmann transfer
orbit.10 At perihelion we open the sail and apply an in-
stantaneous prograde boost as motivated by the Oberth
effect.

In practice our spacecraft will carry a fixed amount
of propellant which, according to the rocket equation,
corresponds to fixed total ∆v budget. This presents us
with a dilemma. Do we

(a) Use the full ∆v in the retrograde boost to drop as
close as possible to the Sun, but leave no propellant
for a prograde boost at perihelion, i.e. just rely on
the sail from there?

(b) Forego the dive entirely and apply a full prograde
boost on the initial circular orbit as we open the
sail?

Or do we perform a combination of the two? This is
the general case, shown in Fig. 1. The spacecraft starts
on the circular orbit ¬. With 0 ≤ f ≤ 1, a retrograde
boost of f∆v is applied at A to put the spacecraft on the
elliptical transfer orbit . At this orbit’s perihelion P,
a prograde boost of (1 − f)∆v is applied and the solar
sail is simultaneously deployed to put the spacecraft on
orbit ®. It is not obvious what value of f will produce
the largest asymptotic velocity. The retrograde boost at
A will reduce the energy of the spacecraft, yet we hope
to more than recover this from the higher intensity solar
radiation closer to the Sun.

To resolve this we will now compute the velocity of the
sail for the general case. The initial circular orbit ¬ of
radius ri has an orbital velocity vi given by

v2i =
µ

ri
. (4)

At point A on this orbit the retrograde boost is applied,
leaving the spacecraft with a velocity

ui = vi − f∆v (5)
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FIG. 1. The orbits in the nominal sun diver scenario: ¬
an initial circular orbit;  an elliptical transfer orbit after
the retrograde boost of f∆v of A; ® the final orbit after the
prograde boost of (1− f)∆v and sail deployment at P. These
orbits are shown to scale with ri = 1 au, ∆v = 10 km/s,
f = 0.5, and λ = 0.3, which makes orbit ® a hyperbola. The
dot in the centre is the Sun (not to scale).

which puts it on elliptical orbit . Immediately after the
boost the spacecraft has not yet moved, so its (specific)
energy is

EA2 = − µ
ri

+
1

2
u2i (6)

where the first subscript (A) refers to the position and the
second subscript (2) to the orbit. The spacecraft cruises
from its aphelion at A to its perihelion at P, where the
radius is rp, the velocity is vp, and the energy is

EP2 = − µ
rp

+
1

2
v2p . (7)

By conservation of energy EA2 = EP2. The (specific)
angular momentum, r× v, is also conserved. Evaluating
this at A and P is simple because the velocity is perpen-
dicular to the radial vector. Thus

riui = rpvp . (8)

Equating Eqs. (6) and (7) and substituting for rp from
Eq. (8) gives a quadratic equation in vp,

v2p −
2µ

riui
vp +

2µ

ri
− u2i = 0 . (9)

This has two solutions. One is vp = ui, which only makes
sense when f = 0, i.e. the spacecraft makes no retrograde

boost and so no dive. This can be treated as special case
of the other solution, which is

vp =
2µ

riui
− ui . (10)

When the spacecraft arrives at P on orbit , it si-
multaneously opens its sail and applies a prograde boost
of (1 − f)∆v, putting it onto orbit ®. As the sail is
now open and its normal directed towards the Sun, the
gravitational parameter is reduced by the factor (1− λ)
(section II A), so the spacecraft’s energy is

EP3 = −µ(1− λ)

rp
+

1

2
[vp + (1− f)∆v]2 . (11)

The spacecraft will cruise away from the Sun and will get
at least as far as ri. Its energy at some distance r where
its velocity is vs is

Er3 = −µ(1− λ)

r
+

1

2
v2s . (12)

From conservation of energy we can equate EP3 and Er3

and then substitute for vp from Eq. (10). After a few lines
of algebra we get the following expression for vs in terms
of the initial orbit, λ, ∆v, and f (via ui from Eq. 5),

v2s = 4λ
v4i
u2i

+2µ(1−λ)

(
1

r
+

1

ri

)
+(vi−∆v)2−4

v2i
ui

(vi−∆v) .

(13)
Note that ri and vi are not independent quantities: They
are related via Eq. (4) because we assumed a circular
initial orbit when using angular momentum conservation.

Equation (13) is not very intuitive, but we can check
that it gives the right results in certain limiting cases.
For example, f = 0 corresponds to not doing any dive
and applying the full ∆v in the initial orbit at the same
time as the sail is deployed. Equation (13) then gives
v2s = (vi + ∆v)2 at r = ri for all λ, as we would expect.

What value of f gives the largest value of vs at some
distance r? This is potentially a function of all the
other parameters in Eq. (13). We consider the space-
craft starting at the Earth’s orbit of ri = 1 au, in which
case vi = 29.8 km/s. While the numerical results will of
course change when selecting a different initial orbit, the
strategy that we should adopt to achieve the maximum
velocity at infinity is independent of this. Furthermore,
it is sufficient to consider the velocity of the sail upon
its return to r = ri, as we will see that the strategy
which maximizes the velocity here will also maximize it
as r →∞, if the spacecraft can reach infinity at all.

Figure 2 shows how vs(r= ri) varies with f for a sail
with λ = 0.5 and various values11 of ∆v. We see that for
all ∆v > 0, vs increases monotonically with f . In other
words, the largest velocity is achieved by diving as close
to the Sun as possible. When ∆v = 0 then of course
vs = vi.

Figure 3 shows the same situation but for a smaller
lightness number of λ = 0.2. Now we see that for smaller



5

40
60

80
10

0
12

0

initial burn fraction, f

sa
il 

ve
lo

ci
ty

 a
t r

 =
 r i 

 [k
m

/s
]

0.0 0.2 0.4 0.6 0.8 1.0

∆v = 5

∆v = 10

∆v = 15

∆v = 20
λ = 0.5

FIG. 2. The solid lines show the sail velocity vs from Eq. (13)
for r = ri (i.e. upon return to its initial altitude) and λ = 0.5
as a function of f for different values of ∆v (in km/s). The
dashed lines show the corresponding sail velocity for f = 0,
i.e. when no dive is performed; these lines are horizontal.

30
40

50
60

70

initial burn fraction, f

sa
il 

ve
lo

ci
ty

 a
t r

 =
 r i 

 [k
m

/s
]

0.0 0.2 0.4 0.6 0.8 1.0

∆v = 5

∆v = 10

∆v = 15

∆v = 20
λ = 0.2
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values of ∆v, vs(r=ri) decreases monotonically with in-
creasing f . In these cases, therefore, the largest velocity
upon return to r = ri is achieved by not diving at all
and simply doing a prograde boost of ∆v from the initial
orbit. This boost is formally applied at point P in Fig. 1,
although of course it could be applied at any point on
the initial orbit. It appears that for a given λ, there is a
value of ∆v below which the best strategy is to apply the
full boost prograde (f = 0, no dive) and above which the
best strategy is to apply the full boost retrograde (f = 1,
full dive).

This conclusion can also be obtained from Fig. 4, which
plots vs(r=ri) for ∆v = 10 km/s and lightness numbers
from 0.0 to 0.5, and moreover in Fig. 5 which zooms in
on the transition region for lightness numbers between
0.24 and 0.28. The curves in the latter figure all show a
minimum. It can be shown by differentiation that if the
function vs(f) has a turning point at all within the range
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0 ≤ f ≤ 1 (and it does not always have one, e.g. Fig. 2),
then this is always a minimum. This is true for any r, and
indeed any values of the other parameters. Hence there
is never an intermediate value of f which will maximize
vs: The optimum strategy is either f = 0 or f = 1. In
other words, to achieve the maximum velocity at infinity
we must use all the propellant in one go, either all at P
(f = 0) or all at A (f = 1) in Fig. 1. Partitioning the
propellant use between these points (or indeed any others
points) will yield a lower velocity at infinity. Which of
the two strategies we should adopt depends on the values
of the parameters. For example, in Fig. 5 we see that for
the three smallest values of λ shown (0.24, 0.25, 0.26),
f = 0 maximizes vs, whereas for the two largest values
of λ shown (0.27 and 0.28), f = 1 maximizes vs.

We can use an inequality to determine the relationship
between the parameters that governs the transition from
f = 0 to f = 1 being the best strategy. We ask for what
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values of the parameters is

v2s(f=1) > v2s(f=0) . (14)

Using Eq. (13) and a little manipulation this inequality
can be written

λ >
(1−∆v/vi)

2

2−∆v/vi
. (15)

This holds for all r because the term involving r in
Eq. (13) does not have a factor of f in it, so cancels out.
This inequality is plotted in Fig. 6, and is one of the main
conclusions of this study. It shows that for a given ∆v
the optimal strategy is not to dive if λ is too small. The
reason is that with a smaller lightness number, the extra
kinetic energy provided by the solar radiation from mov-
ing close to the Sun does not compensate for the energy
lost by performing the dive.

Using Eq. (13) we can compute the velocity the sail
will attain as r → ∞. This is shown for case λ = 0.2
in Fig. 7 as a function of ∆v for no dive and for a full
dive. The transition between the strategies yielding the
larger velocity occurs at ∆v = 13.2 km/s in accordance
with inequality (15). Note that if ∆v is too small the
spacecraft cannot reach infinity at all.

Figure 8 shows the velocity at infinity for several differ-
ent lightness numbers. In each case the optimal strategy
(f = 0 or 1) at each ∆v has been adopted according to
inequality (15). Only if λ > 0.5 will the spacecraft reach
infinity even for ∆v = 0. As we saw before, for λ < 0.5
the optimal strategy for smaller values of ∆v is not to
dive at all. Recall that λ = 0 corresponds to no sail.

How fast and close to the Sun does the spacecraft get
in a full dive? This is shown in Fig. 9 as a function of ∆v.
For ∆v larger than about 20 km/s the spacecraft will ap-
proach within 10 solar radii (0.047 au), which is approx-
imately the closest a spacecraft has ever approached the
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Sun (the Parker Solar Probe, although it achieved this
through a series of gravity assists).15,16 Thermal consid-
erations, i.e. not melting the spacecraft, would probably
set the limit on the closest approach.

We have only considered ∆v < vi in order to avoid
the singularity caused by the spacecraft dropping into
the centre of the Sun. If we had enough propellant for
a larger boost, then the optimal strategy would be to
dive as close to the Sun as possible and to use all of the
remaining propellant in the prograde boost at perihelion.
We will nonetheless look at the idea of applying prograde
boosts higher in the potential in the next section.
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FIG. 9. Variation of the perihelion distance (top) and peri-
helion velocity (bottom) as a function of the size of the ret-
rograde boost for a full dive (f = 1). The horizontal line in
the upper panel indicates 10 solar radii.

IV. VARIATIONS ON THE SUN DIVER
SCENARIO

A. Boost at infinity

In the nominal scenario in the previous section we con-
sidered applying rocket boosts in only two places, namely
on the initial circular orbit and/or at perihelion. We
chose perihelion because the Oberth effect tells us to ap-
ply the boost when the spacecraft is moving fastest. Yet
when λ > 1 the net force on the spacecraft is outwards,
so the spacecraft is moving fastest when it reaches infin-
ity. Is infinity therefore a more efficient place to apply
∆v in this case? We saw that in order to achieve the
largest final velocity when λ > 1/2 we should do a full
dive (Fig. 6). So it is not immediately obvious which of
the two following scenarios gives the largest velocity at
infinity:

(a) Apply the full ∆v retrograde to do a full dive (same
scenario (a) as in section III).

(c) Open the sails on the initial circular orbit to sail to
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FIG. 10. The solid lines show the velocity of the spacecraft
at infinity after performing a full dive (Eq. (13), f = 1) as a
function of ∆v for various lightness numbers λ (indicated on
the right). The dashed lines show the corresponding velocity
achieved if no dive is performed, and the ∆v is applied at
infinity instead (Eq. (16)).

infinity, then apply the full ∆v.

The velocity at infinity for scenario (a) we obtain from
Eq. (13) with r →∞, f = 1. The velocity at infinity for
scenario (c) before we apply the final boost is obtained
from Eq. (13) with r →∞,∆v = 0. We then add ∆v to
get

vc = vi
√

2λ− 1 + ∆v Scenario (c) . (16)

A comparison of the expressions for the two velocities is
not very informative, but a plot makes it clear which sce-
nario is superior. The two velocities are shown in Fig. 10
as a function of ∆v for various lightness numbers. We
only show λ > 1/2 because for smaller lightness numbers
the sail in scenario (c) cannot reach infinity. It is clear
from the plot that scenario (a) is superior to scenario
(c), except at ∆v = 0 where they are of course equiva-
lent. The reason is that for such large lightness numbers,
more energy is gained from the Sun by diving close to
the Sun, than is lost by performing this dive.

In practice a significant part of the mass of a rocket
is its propellant. Thus the mass of the spacecraft,
and therefore its lightness number, depends strongly on
whether the propellant has been expended. In our nom-
inal scenario, which includes scenario (a), the sail is only
deployed after all the propellant has been depleted – and
the propellant tanks and engines would be jettisoned too
– so the spacecraft would have a small mass and thus
large lightness number. Scenario (c), in contrast, requires
the solar sail to accelerate all of the propellant to infin-
ity, and so the spacecraft with the same sail would have
a smaller lightness number than in (a). So in practice
scenario (c) would be even worse.
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B. Sail towards the Sun

If the normal of the sail is not kept parallel to the radial
vector pointing from the Sun to the spacecraft, solar pho-
tons will exert a non-central force on the spacecraft. This
leads to non-Keplerian orbits, the properties of which de-
pend on how the pitch angle α between the radial and
normal vectors varies. One particularly interesting so-
lution to the dynamical equations, and one of the few
analytic ones, occurs when α is kept fixed. This gives
rise to logarithmic spiral orbits17 which are described in
polar coordinates (r, θ) as

r = ri exp(θ tan γ) (17)

where γ is a quantity (the spiral angle) that depends on
α and λ only.3 The sail describes a spiral path around
the Sun. The velocity of the sail, vspiral, at a point (r, θ)
in its orbit is

v2spiral =
µ

r
[1− λ cos2α(cosα− sinα tan γ)] (18)

where the radial and tangential components are
vspiral sin γ and vspiral cos γ respectively. This trajectory
is interesting for our application because if α is nega-
tive, the solar photons act to decelerate the spacecraft
compared to the non-sail Keplerian orbit, and so the
spacecraft will spiral inwards towards the Sun. This is
achieved without expending any propellant, and so al-
lows us to apply the entire ∆v at perihelion. Can this be
used to achieve a larger velocity at infinity than the full
dive scenario of section III? We compare the following
two scenarios, both of which start from a circular orbit
with the sail folded away.

(a) Apply the full ∆v retrograde on the initial orbit in
order to dive to a distance r = rp, at which point
we open the sail and then keep it pointed at the
Sun (same scenario (a) as in section III);

(d) Tilt the sail in order to spiral towards the Sun until
distance r = rp, at which point we simultaneously
apply the full ∆v prograde and turn the sail to keep
it pointed at the Sun.

This is not an ideal comparison because the velocity on
the spiral orbit in (d) immediately after the sail has been
tilted is not equal in magnitude or direction to the ve-
locity of the initial circular orbit. An additional impulse
or maneuver would therefore be required to put the sail
onto the spiral trajectory. We can ignore this, however,
because we will see that it does not change the answer to
the above question.

To see which of these scenarios give us the largest ve-
locity at infinity (or indeed any distance r > rp) we com-
pare the velocities at r = rp, which are vp from Eq. (10)
with ui = vi −∆v for scenario (a), and vspiral + ∆v from
Eq. (18) for scenario (d). Let us refer to these as the
“closest approach velocities”. A comparison at r = rp is
sufficient because in both scenarios the force experienced
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FIG. 11. A logarithmic spiral orbit as described by Eq. (17)
(where x = r cos θ, y = r sin θ) with ri = 1 au, γ = −8.1◦,
shown from θ = 0 rad to θ = 8π rad. The dot in the center is
the Sun (not plotted to scale).

by the spacecraft after closest approach is the same and
is conservative (gravity plus photon pressure, both di-
rected radially). The magnitude of the velocity at any
later point is therefore determined entirely by the energy
at r = rp.

By equating Eqs. (6) and (7) and eliminating ui using
Eq. (8), we may express vp in scenario (a) in terms of rp
and ri only

v2p = 2µ
ri
rp

1

(ri + rp)
. (19)

Although we are only interested in a full dive here, this
expression actually holds for any value of f . The corre-
sponding value of f∆v, and therefore the ∆v we use in
scenario (d), is computed using Eqs. (10) and (5).

For the sake of illustration let us adopt the following
parameters for the spiral orbit: λ = 0.3 and α = −10◦,
which correspond to γ = −8.1◦. The orbit for four revo-
lutions around the Sun is shown in Fig. 11. The magni-
tude of the velocity, vspiral, as a function of radial distance
is shown by the lower solid line in Fig. 12. For the spiral
orbit of scenario (d), the closest approach velocity that
we achieve is vspiral + ∆v, shown by the dotted line. For
the full dive of scenario (a), the closest approach velocity
is shown by the upper solid line. We see that the clos-
est approach velocity for scenario (a) is above that for
scenario (d) for any given rp (which is equivalent to any
given ∆v). Although this is shown here for scenario (d)
with a certain λ and α, we find that it holds for any λ
and α.

If only a limited ∆v were available, say 5 km/s, then in
scenario (a) we achieve rp = 0.53 au and vp = 46.8 km/s,
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FIG. 12. Sail velocities as a function of perihelion distance.
The vertical solid line indicates 10 solar radii. The lower solid
line is the velocity vspiral from Eq. (18) with r = rp for the
logarithmic spiral orbit shown in Fig. 11. The dashed line
is its radial component (which is negative). The tangential
component is not show as it is almost equal to vspiral. The
dotted line is vspiral + ∆v, i.e. the velocity of the sail after
the prograde boost (scenario (d)). The upper solid line is the
perihelion velocity for the full dive (scenario (a), Eq. (19)),
which establishes a one-to-one relationship between rp and
∆v (Fig. 9) and is shown along the top axis. We see that the
velocity achieved in scenario (a) is always larger at a given
∆v than using this same ∆v in scenario (d).

whereas in scenario (d) we could perhaps spiral in much
closer to the Sun, e.g. to 10 solar radii where vspiral =
117.2 km/s, and then apply the same ∆v to get a closest
approach velocity of 122.2 km/s. But the main point of
the comparison in this section is to show that if we have
enough ∆v to dive as close to the Sun as is thermally
possible, then scenario (d) is always inferior to scenario
(a): Spiraling towards the Sun to this distance and then
applying that ∆v always results in a smaller velocity than
a full dive.

It was mentioned above that an additional impulse
would in practice be needed to put the spacecraft on
a logarithmic spiral trajectory in the first place. This
would take away some of the available ∆v, making sce-
nario (d) even less favorable.

C. Multi-stage transfer orbits

In section III we only considered a single elliptical
transfer orbit, from the initial circular orbit to the point
where the sail is deployed. Multi-stage transfers can also
be considered, and these are sometimes used in prac-

tice because they sometimes need a smaller total ∆v to
move between the same two orbits. An example is the bi-
elliptic Hohmann transfer orbit.10 Starting on a circular
orbit of 1 au radius, a prograde boost is used to put the
spacecraft on an elliptical orbit of higher energy and thus
larger semi-major axis than the initial orbit. When the
spacecraft reaches aphelion, a relatively small retrograde
boost is sufficient to put the spaceraft on a less eccentric,
lower energy orbit, meaning it will dive close to the Sun.
A final retrograde boost could be applied at perihelion
to put the spacecraft on a low circular orbit around the
Sun, but in our application we would now open the solar
sail to move away from the Sun at high velocity. Such
a maneuver can be set up to require less ∆v than our
simple one-transfer maneuver to reach a given perihelion
(or to reach a smaller perihelion for a given ∆v).

V. CONCLUSIONS

We have examined the consequences of combining im-
pulsive boosts with solar sails in Keplerian orbits as a way
of maximizing the velocity of a spacecraft at infinity. One
of the main conclusions of this study may appear counter-
intuitive: decelerating a solar sail by some ∆v can result
in a larger velocity at infinity than accelerating it by the
same ∆v. This is always the case for sufficiently large
∆v or sail lightness number λ (Fig. 6), and is true for
any ∆v when λ > 1/2. In these cases the largest velocity
at infinity is achieved by using the entire ∆v in a retro-
grade burn to dive as close to the Sun as possible before
opening the sail at perihelion. This is because the extra
energy acquired from the solar radiation by diving close
to the Sun more than compensates for the energy lost by
performing the dive. For smaller ∆v or lightness number,
a larger velocity at infinity is achieved by instead using
the entire ∆v in a prograde burn at the moment the sail
is deployed to move away from the Sun without perform-
ing any dive. A combination of retrograde and prograde
burns is always suboptimal. Tilting the sail to spiral in
to the Sun before applying the ∆v, or using a sail (with
lightness number above 1/2) to travel directly to infinity
and then applying ∆v, are also inferior in terms of final
velocity achieved. We have looked here only at the use of
a single transfer orbit. A natural extension of this work
would be to examine the optimal combination of three
impulsive boosts for two transfer orbits that maximize
the spacecraft velocity at infinity.
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