Gaia DR3: The Extragalactic content

- Gaia Collaboration Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg
 - Gaia Symposium, IIA Bengaluru I 5 July 2022

Multiple modules deal with extragalactic sources

- Classification of Gaia objects
 - using BP/RP spectrum and astrometry (Discrete Source Classifier, DSC)
 - using photometric light curves (Vari)
- Input lists
 - fit 2D brightness profiles to extended objects (Extended Objects, EO)
 - identify objects from astrometry, similar to Gaia-CRF3
- Redshift estimates
 - quasars (QSOC) and galaxies (UGC)
- Link: overview paper

The Discrete Source Classifier (DSC)

Link: DSC overview Link: DSC details

A probabilistic classifier

if $P_{C}(quasar) > 0.5$ then classlabel dsc = "quasar"

if $P_{S}(quasar) > 0.5 \& P_{A}(quasar > 0.5)$ then classlabel dsc joint = "quasar"

and similarly for "galaxy"

DSC: Allosmod training features

DSC: CMD and CCD of training data

DSC: Class prior

	quasar	galaxy	star	white dwarf	physical binary star
∞	1/1000	1/5000	1	1/5000	1/100
=	0.000989	0.000198	0.988728	0.000198	0.009887

The prior must also be taken into account when estimating the purity on validation data because validation data usually does not have enough stellar contaminants. See <u>Bailer-Jones et al. (2019; MNRAS 490, 5615</u>) section 3.4

Important

DSC: Performance

classification by P > 0.5

					classlab	el_dsc	classlabel_dsc_joi	
	Specmod		Allosmod		Combmod		Spec&Allos	
	compl.	purity	compl.	purity	compl.	purity	compl.	purit
quasar	0.409	0.248	0.838	0.408	0.916	0.240	0.384	0.62
galaxy	0.831	0.402	0.924	0.298	0.936	0.219	0.826	0.63
star	0.998	0.989	0.998	1.000	0.996	0.990	_	-
quasar, $ \sin b > 0.2$	0.409	0.442	0.881	0.603	0.935	0.412	0.393	0.78
galaxy, $ \sin b > 0.2$	0.830	0.648	0.928	0.461	0.938	0.409	0.827	0.81′

5 7

DSC: $P_{Combmod} > 0.5$

blue = quasars orange = galaxies black = stars

Contributions to the extragalactic candidate tables

Quasar candidates 6.6 million, 52% pure

Galaxy candidates 4.8 million, 69% pure

Comments on extragalactic candidate tables

- Heterogeneous sample
 - no common definition of "quasar" or "galaxy" across the modules
- Purity and completeness varies among subsets contributed by the modules
 - input lists and Vari driven by purity; DSC driven by completeness
 - higher purity subset achieved with further selections (at cost of completeness)
- If relative contamination is constant, absolute contamination follows source density
- Classification uses only Gaia data (higher purity expected with additional data)

Purer subsets

Table 11. ADQL query to select the purer quasar sub-sample.

SELECT * FROM gaiadr3.qso_candidates WHERE (gaia_crf_source='true' OR host_galaxy_flag<6 OR</pre>

Table 12. ADQL query to select the purer galaxy sub-sample.

WHERE (radius_sersic IS NOT NULL OR

```
classlabel_dsc_joint='quasar' OR
vari_best_class_name='AGN')
```

```
SELECT * FROM gaiadr3.galaxy_candidates
      classlabel_dsc_joint='galaxy' OR
      vari_best_class_name='GALAXY')
```

Sky distribution of extragalactic candidates Full set

Quasar candidates 6.6 million, 52% pure

Hammer-Aitoff, Galactic coordinates, HEALpixel level 7 (0.21 sq. deg.)

Galaxy candidates 4.8 million, 69% pure

Sky distribution of extragalactic candidates Purer subset

Quasar candidates 1.9 million, 95% pure

Galaxy candidates 2.9 million, 94% pure

Hammer-Aitoff, Galactic coordinates, HEALpixel level 7 (0.21 sq. deg.)

Colour, magnitude distributions of extragalactic candidates Full set

10 000 random sources of each class, linear density contours of full set

Colour, magnitude distributions of extragalactic candidates Purer subset

10 000 random sources of each class, linear density contours of full set

Magnitude distributions

6.4 million and 1.7 million sources

Redshift distributions

1.4 million and 1.1 million sources

BP/RP spectra

163 000 quasar candidate spectra published (119 000 in purer subset) 26 500 galaxy candidate spectra published (12 600 in purer subset)

BP/RP compared to SDSS for some galaxy candidates

Quasar composite spectra

Surface brightness profiles

- 65 000 host galaxies of quasars detected
- I 6 000 host galaxies of quasars with a fitted Sérsic profile
- 915 000 galaxies with fitted Sérsic and de Vaucouleurs profiles

- Candidate tables are a mixture of input lists and Gaia data classification
- Complete tables
 - 6.6 million quasar candidates, 4.8 million galaxy candidates
 - ▶ 50 70% pure
- Purer subset (using a simple ADQL query)
 - 1.9 million quasar candidates, 2.9 million galaxy candidates
 - ▶ 95% pure
- Classifications, BP/RP spectra, redshifts, and 2D spatial profile fits

Summary