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1 Key points

• Fitting time series model to data is not fundamentally different from fitting other types
of data: the basic principle remains to define a generative model for the data, a likeli-
hood, and a prior over the model parameters. Model comparison can be done as before
using the evidence, K-fold cross-validation likelihood, or other methods.

• A fully general solution to fitting an arbitrary model to time series data with arbi-
trary noise models on both the signal and time axes is readily obtainable. It can be
solved in general through numerical integration, although some common special cases
or approximations render simpler solutions.

• Properly defined, the periodogram or power spectrum is closely related to the posterior
probability density function over the frequency parameter of a sinusoidal model.

• A stochastic time series model is one in which the signal evolution itself has a non-
deterministic component, even in the absence of measurement noise. A particularly
useful model is the Ornstein–Uhlenbeck process, or damped random walk, which has
been used to model Brownian motion.
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2 Introduction

Bayesian data analysis is a general approach to modelling, and its principles and methods
apply equally well to time series data. In this lecture I will consider just single variable time
series, in which we are interested in the variation of a single quantity, z, with time, t. Given
a set of J events, D = {tj , zj}, we are interested in one or more of the usual three questions:

1. Parameter estimation: Given a model M , which values of its parameters, θ, best de-
scribes the data? Or rather, what is the (multidimensional) posterior probability density
function (PDF) P (θ|D,M)?

2. Model comparison: Given a set of models {Mi}, which best explains the data? Or
rather, what are the values of the model posterior probabilities P (Mi|D)?

3. Prediction: What value do we predict for the time series at some time t′? Or rather,
what is P (z|t = t′)?1

3 Sinusoidal model and the Bayesian periodogram

A general model for our data, f(t), we can write as

zj = f(tj) + ε(tj) (1)

where ε(tj) is the noise model. A specific sinusoidal model we could write as

f(t) = A1 cos(ωt) +A2 sin(ωt) (2)

which has three parameters θ = (A1, A2, ω). (This is appropriate only if the data have zero
mean, which we can arrange prior to modelling.) A typical noise model is a zero mean
Gaussian, i.e.

P (zj |θ,M) =
1

σj
√

2π
exp

(
− [zj − f(tj)]

2

2σ2
j

)
(3)

where the {σj} could be parameters of the model which we determine via inference, or they
may be given. Quite often the noise model is taken to be stationary, in which case we can
replace these with a scalar σ, which I will now assume. If we additionally assume the measured
times {tj} to be noise-free (“fixed”), then equation 3 is just the likelihood for one data point.
Strictly speaking this likelihood should be written P (zj |tj , θ,M), but I make the dependence
on the fixed times implicit, and now write the (noisy) measured data as D = {zj}.

Assuming that the data have been measured independently, then the total likelihood is the
product of the individual likelihoods

P (D|θ,M) =
∏
j

1

σj
√

2π
exp

(
− [zj − f(tj)]

2

2σ2

)

=

(
1

σ
√

2π

)J
exp

(
− 1

2σ2

∑
j

[zj − f(tj)]
2
)
. (4)

1Posed this way, we have averaged over all models. We might be instead interested in P (z|t = t′,M),
which has marginalized over the parameters for one model, or even P (z|t = t′, θ,M), for some “optimal” value
of θ.
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Inference of the model parameters proceeds in the usual way: we adopt a prior PDF and
multiply this by the likelihood to get the unnormalized posterior. As this does not have
an exact closed form in the θ, we may sample it using some Monte Carlo technique, then
use density estimation to plot the resulting posterior PDF and estimate from this summary
statistics such as the mean, mode and confidence intervals.

If we marginalize the posterior PDF over all parameters other than ω, then we end up with
the one-dimensional (1D) posterior PDF P (ω|D,M), which is the Bayesian periodogram. Bayesian

periodogramThis is already a probability density function, so unlike most other periodograms it does not
need to be calibrated via (often dubious) significance tests.

3.1 An analytic Bayesian periodogram2

A few simple and not very restrictive approximations to the likelihood allow us to extract an
analytic Bayesian periodogram from the above analysis. Expanding the square in equation 4
and substituting in equation 2 we can write the likelihood as

P (D|θ,M) ∝ σ−J exp

(
− G

2σ2

)
(5)

where I have dropped the numerical constant and where

G =
∑
j

z2
j +

∑
j

f(tj)
2 − 2

∑
j

zjf(tj)

=
∑
j

z2
j +

∑
j

f(tj)
2 − 2[A1R(ω) +A2I(ω)] (6)

with

R(ω) =
∑
j

zj cos(ωtj) (7)

I(ω) =
∑
j

zj sin(ωtj) . (8)

Expanding the model term∑
j

f(tj)
2 = A2

1

∑
j

cos2(ωtj) +A2
2

∑
j

sin2(ωtj) + 2A1A2

∑
j

cos(ωtj) sin(ωtj) . (9)

When J � 1 this can be simplified using the following approximations∑
j

cos2(ωtj) =
J

2
+

1

2

∑
j

cos(2ωtj) ' J

2
(10)

∑
j

sin2(ωtj) =
J

2
− 1

2

∑
j

cos(2ωtj) ' J

2
(11)

∑
j

cos(ωtj) sin(ωtj) =
1

2

∑
j

sin(2ωtj) � J

2
. (12)

2This section follows the development in chapter 2 of Bretthorst (1998), with additional derivations and
comments.
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In each of these we have the sum of lots of positive and negative terms, and unless we happen
to have ωtj = n/2 for integer n for all tj , each of these sums is much less than 1, yielding
the above approximations. This approximation also requires that ωtj � 1, otherwise we will
have cos(2ωtj) ' 1 ∀ i. Thus in addition to requiring a reasonably large amount of data
(J � 1), our approximation also requires that we have no low frequency variation in the data
(the data have been detrended if necessary).

The consequence of these approximations is that∑
j

f(tj)
2 ' J

2
(A2

1 +A2
2) (13)

so we can write G in the likelihood (equation 5) as

G ' Jz2 +
J

2
(A2

1 +A2
2)− 2[A1R(ω) +A2I(ω)] (14)

where

z2 =
1

J

j=J∑
j=1

z2
j (15)

is the mean square of the data. This form for G will prove useful in the next step.

Often we are interested in the posterior PDF over just the frequency. To find this we must
multiply the likelihood by the prior PDF and integrate over A1 and A2. For simplicity
we adopt for both amplitudes a uniform prior which stretches from minus infinity to plus
infinity.3 Note that this is an improper prior, i.e. it does not have a finite integral. This is
not a problem here, however, because we are integrating its product with a function which
drops to zero as the magnitude of the amplitude increases (the likelihood), so the integral
– which is just the integral of equation 5 – will converge. From equation 14 can write the
integrand as

exp

(
− G

2σ2

)
= exp

(
−Jz2

2σ2

)
exp

(
−JA

2
1

4σ2
+
R(ω)A1

σ2

)
exp

(
−JA

2
2

4σ2
+
I(ω)A2

σ2

)
(16)

We make use of the following standard Gaussian integral for each integration∫ +∞

−∞
exp (−ax2 − bx) dx =

√
π

a
exp

(
b2

4a

)
(a > 0) . (17)

Thus our integral becomes

∫∫ +∞

−∞
exp

(
− G

2σ2

)
dA1dA2 = exp

(
−Jz2

2σ2

)
2σ

√
π

J
exp

(
R(ω)2

Jσ2

)
2σ

√
π

J
exp

(
I(ω)2

Jσ2

)
(18)

3We may think of this as being “uninformative” because it is uniform. This description is misleading,
however, because a uniform distribution can be made non-uniform by various transformations of the parameter.
A distribution uniform over A is not uniform over logA. Is this still “uninformative”?
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and so the marginalized posterior of ω and σ (implicitly also adopting uniform priors on
these) is

P (ω, σ|D,M) ∝ σ2−J exp

(
−Jz

2

2σ2
+
R(ω)2 + I(ω)2

Jσ2

)
. (19)

If σ is given we can absorb the first term in the exponent into the proportionality constant
and then have the posterior PDF over ω, the (Bayesian) periodogram Periodogram

for
known
noise

P (ω|D,M) ∝ exp

(
W (ω)

σ2

)
(20)

where

W (ω) =
1

J

[
R(ω)2 + I(ω)2

]
=

1

J

∣∣∣ j=J∑
j=1

zje
−iωtj

∣∣∣2 . (21)

is the Schuster periodogram. Arthur Schuster intuitively defined the periodogram as W (ω) Schuster
periodogram1905. We now see a rigorous basis for it in terms of fitting a single component sinusoidal

model to data under some mild assumptions. But the Schuster periodogram itself ignores
the noise in the data, whereas the Bayesian periodogram (posterior PDF) does not. Note
that the Schuster periodogram is just the magnitude of a discrete Fourier transform of the
data, and it is defined for any sampling of the data: nothing we have done demands uniform
sampling.

If σ is instead unknown, then by adopting a prior over σ, multiplying this by the right-hand-
side of equation 19 (which is proportional to the likelihood) and then integrating over σ, we
will get the posterior over ω for the case of unknown noise. A convenient prior is the Jeffrey’s
prior, P (σ) = 1/σ, which is again an improper prior (and is equivalent to a prior uniform in
log σ). We have

P (ω|D,M) ∝ Q =

∫ ∞
0

σ1−J exp

(
−Jz

2

2σ2
+
W (ω)

σ2

)
dσ (22)

Writing

a =
Jz2

2
−W (ω) (23)

and making the substitution x = 1/σ, we can write this as

Q =

∫ ∞
0

xJ−3 exp (−ax2) dx . (24)

This is a standard integral, with result

Q =
1

2
Γ
(J − 2

2

)
a(2−J)/2 (a > 0, J > 2) . (25)

Absorbing the terms not involving a into the proportionality constant, we can write the
posterior PDF over ω as Periodogram

for
unknown
noiseP (ω|D,M) ∝

(
Jz2

2
−W (ω)

)(2−J)/2

. (26)
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The condition a > 0 implies Jz2

2 > W (ω). As the maximum value of W (ω) is z2, this
condition is always met provided J > 2, a condition we already required earlier. The fact
that a > 0 also ensures that the right-hand-side of equation 26 is always defined and is
positive, a requirement for a probability density function.

In summary, we have derived analytic forms for the Bayesian periodogram for the case of
constant noise standard deviation, where this is known (equation 20) and unknown (equa-
tion 26). These are valid for any time sampling. In both cases we have assumed that we
have a reasonably large amount of data, and that the data are zero mean and lacking any
low frequency trend. We will use them in the next section.

Bretthorst (1998) goes on to show (in his chapter 3) how the above can be extended to a
model with multiple sinusoidal components, or indeed any other set of basis functions. He
shows that the simplification to “analytic” forms for the PDF – similar to those derived
above – can be achieved through a diagonalization of these basis functions (i.e. forming a
new orthogonal basis set through linear combinations of the original set). This accommodates
whatever time sampling we have in the data.

4 Parameter estimation with the sinusoidal model

The following R code shows how we can implement the ideas in the previous sections. It
makes use of the functions defined in the appendix in section B. Plots generated by this code
are shown in Figures 1 to 4.

The parameters are A1, A2, and ν, where ω = 2πν. There are called theta in the code.

Concerning the priors, I adopt Gaussian distributions for the two amplitude parameters,
with zero mean, and standard deviations on the scale of the amplitude of the data. As the
frequency must be positive, I use a gamma distribution for its prior. The gamma distribution
is characterized by two parameters, shape and scale. I adopt a shape parameter greater than
1 to ensure that very low frequencies are suppressed (I use 1.5), and a scale parameter which
yields non-vanishing probabilities for the highest frequencies I expect. In real problems,
we are likely to have some idea of this from the nature of the phenomenon, or from what
the measurements may have been sensitive to. Thus in this implementation there are three
“hyperparameters” (parameters of the prior PDF), the Gaussian standard deviation for each
of A1 and A2 and the gamma scale for frequency. There are called alpha in the code.

R file: Rcode/exp_sinusoidal.R

# C.A.L. Bailer-Jones

# Astrostats 2013

# This file: exp_sinusoidal.R

# R code for experimenting with the sinusoidal model

source("sinusoidal.R")

source("monte_carlo.R") # provides metrop() and make.covariance.matrix()

set.seed(200)

# Generate a time series from a sinusoidal model

C.A.L. Bailer-Jones
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Figure 1: Data set (black) generated from the sinusoidal model (red), equation 2. The true
parameters are A1 = 1, A2 = 1, ω = 2π ∗ 0.5. The same data are shown in both panels.
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Figure 2: Periodograms of the data shown in Fig. 1: Schuster periodogram (top; equa-
tion 21), the logarithm of the (unnormalized) posterior PDF over frequency (i.e. Bayesian
periodogram) for the case of known noise standard deviation (middle; equation 19) and un-
known noise standard deviation (bottom; equation 26). Because the posteriors are shown
on a logarithmic scale, they correspond to a much narrower peak and thus a much better
determined frequency than the plain periodogram.
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Figure 3: Example of a posterior PDF sampling of the sinusoidal model for the data shown in
Fig. 1. The panels in the left column show the chains for the three parameters, those in the
right the 1D PDFs generated from the samples via density estimation. The vertical red lines
indicate the true parameters. In order to test the convergence I intentionally initialized the
MCMC far further from the true values than one could estimate by eyeballing the data (for the
amplitudes) or from the Schuster periodogram. We should therefore reject the early samples
in the chain (the “burn-in”). The chains shown here are not particularly good because the
acceptance rate was rather low (around 0.02). Note that the frequency is nonetheless well
determined – by which I mean a narrow PDF, not proximity to the true values – whereas the
amplitudes are less well determined.
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Figure 4: Predicted data at the mode (in blue) and mean (in green) of the posterior PDF in
Figure 3. Overplotted are the data (black points) and true model (in red).

sinmod <- list(a1=1, a2=1, freq=0.5)

eventTimes <- sort(c(0, 20, runif(n=23, min=0, max=20)))

ysigma <- 0.25

obsdata <- gen.sinusoidal(sinmod=sinmod, eventTimes=eventTimes, ysigma=ysigma)

# Plot data and overplot with true sinusoidal model

oplot.obsdata.sinusoidal(obsdata=obsdata, sinmod=sinmod, ploterr=TRUE, fname="sindat1.pdf")

oplot.obsdata.sinusoidal(obsdata=obsdata, sinmod=NULL, ploterr=TRUE, fname="sindat2.pdf")

# Model assumes data are zero mean

obsdata[,3] <- obsdata[,3] - mean(obsdata[,3])

# Calculate and plot Schuster periodogram and derived posterior PDFs over frequency

schuster(obsdata=obsdata, minFreq=0.05, maxFreq=1, NFreq=1e3, fname="schuster.pdf")

# For the following inference we sample over the three parameters

# theta = c(a1, a2, freq). The hyperparameters of the prior PDFs are

# alpha = c(sd_a1, sd_a2, scale_freq), with mean_a1, mean_a2, and

# shape_freq fixed in the definitions of the functions.

alpha <- c(1, 1, 1) # c(sd_a1, sd_a2, scale_freq)

# Use MCMC to sample posterior for sinusoidal model: c(a1, a2, freq)

sampleCov <- make.covariance.matrix(sampleSD=c(0.05, 0.05, 0.1), sampleCor=0)

thetaInit <- c(0.5, 2, 0.3)

postSamp <- metrop(func=logpost.sinusoidal, thetaInit=thetaInit, Nburnin=0,

Nsamp=3e4, verbose=1e3, sampleCov=sampleCov,

obsdata=obsdata, alpha=alpha)

# Plot MCMC chains and use density estimation to plot 1D posterior PDFs from these.

thetaTrue <- as.numeric(sinmod)

parnames <- c("a1", "a2", "freq")

pdf("sindat_mcmc.pdf", width=7, height=6)

par(mfrow=c(3,2), mar=c(3.0,3.0,0.5,0.5), oma=c(1,1,1,1), mgp=c(1.8,0.6,0), cex=1.0)

for(p in 3:5) { # columns of postSamp

plot(1:nrow(postSamp), postSamp[,p], type="l", xlab="iteration", ylab=parnames[p-2])

C.A.L. Bailer-Jones
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postDen <- density(postSamp[,p], n=2^10)

plot(postDen$x, postDen$y, type="l", xlab=parnames[p-2], ylab="density")

abline(v=thetaTrue[p-2], col="red")

}

dev.off()

# Find MAP solution and mean solutions and overplot on data

posMAP <- which.max(postSamp[,1]+postSamp[,2])

(thetaMAP <- postSamp[posMAP, 3:5])

(thetaMean <- apply(postSamp[,3:5], 2, mean)) # Monte Carlo integration

locplot <- function(theta, col) {

tsamp <- seq(from=min(eventTimes), to=max(eventTimes), length.out=1e3)

omegat <- 2*pi*theta[3]*tsamp

modpred <- theta[1]*cos(omegat) + theta[2]*sin(omegat)

lines(tsamp, modpred, col=col, lw=1)

}

pdf("sindat_fits.pdf", width=6, height=5)

par(mfrow=c(1,1), mgp=c(2.0,0.8,0), mar=c(3.5,4.0,1.0,1.0), oma=c(0,0,0,0), cex=1.2)

plotCI(obsdata[,1], obsdata[,3], xlab="time", ylab="signal", uiw=obsdata[,4], gap=0)

locplot(theta=as.numeric(sinmod), col="red")

locplot(theta=thetaMAP, col="blue")

locplot(theta=thetaMean, col="green")

dev.off()

5 A general method for time series modelling4

In section 3 I made two implicit assumptions. First, I assumed that the process itself was
deterministic. Randomness arose only on account of measurement noise. Yet some processes
are intrinsically random (or stochastic), even if there is no measurement noise. These are
discussed further in section 6. Second, I assumed that the times at which the data were
obtained were subject to no uncertainty. This is not true in general, and often not in practice,
e.g. astronomical ages derived from photometric redshifts or stellar clusters, or geological ages
from the fossil record.

For this more general case we first need a more general notation. Let t and z now correspond
to the true time and signal (respectively), not to the measured values. Instead, for each event
j, our measurement of its time of the event, tj , is sj with a standard deviation (estimated
measurement uncertainty) σsj , and our measurement of the signal of the event, zj , is yj with
a standard deviation (estimated measurement uncertainty) σyj .

For shorthand I write Dj = (sj , yj), the (noisy) data for one event, and σj = (σsj , σyj ). The
measurement model (or noise model) describes the probability of observing the measured
values for a single event given the true values and the estimated uncertainties: it gives
P (Dj |tj , zj , σj). The σj are considered fixed parameters of the measurement model.

M is a stochastic time series model with parameters θ. It specifies P (tj , zj |θ,M), the prob-
ability of observing an event at time tj with signal zj .

To do inference we need to derive the likelihood, P (D|σ, θ,M), where D = {Dj} and σ =

4This section is an introduction to the method explained in detail in Bailer-Jones (2012).

C.A.L. Bailer-Jones



Astrostats 2013. Lecture 2: Bayesian time series analysis and stochastic processes 12

{σj}. (We can also write this as P (D|θ,M) because σ is fixed.) We will see below how to
derive it in terms of the measurement model and time series model, but let’s first examine
these a little more.

5.1 Measurement model

If t and z have no bounds and the measurement uncertainties are standard deviations, then an
appropriate choice for the measurement model is a two-dimensional Gaussian in the variables
(sj , yj) for event j. If we assume no covariance between the variables then this reduces to
the product of two 1D Gaussians

P (Dj |tj , zj , σj) =
1√

2πσsj
e
−(sj−tj)2/2σ2

sj
1√

2πσyj
e
−(yj−zj)2/2σ2

yj . (27)

(The two terms are normalized with respect to sj and yj respectively.) If we had other
information about the measurement, e.g. asymmetric error bars, strictly positive signals, or
uncertainties which are not standard deviations, then we should adopt a more appropriate
distribution.

5.2 Time series model

We can write the time series model as the product of two components

P (tj , zj |θ,M) = P (zj |tj , θ,M)P (tj |θ,M) (28)

which I will refer to as the signal and time components respectively.

The process may be subject to a stochastic component (which has nothing to do with mea-
surement noise). In that case it is useful to express the signal component itself using two
independent subcomponents: (1) the stochastic model of the variation in the signal, z; (2) a
deterministic function which defines the time-dependence of its mean.

The stochastic subcomponent might be a Gaussian

P (zj |tj , θ,M) =
1√
2πλ

e−(zj−η[tj ])
2/2λ2

(29)

where θ = (η, λ) are the “parameters” of the distribution: η[tj ] is the expected true signal
at true time tj ; λ

2 is a parameter which reflects the degree of stochasticity (in this case the
variance) of the process.

For a sinusoidal process, the deterministic subcomponent can be written as before

η = A1 cos(ωt) +A2 sin(ωt) (30)

which has parameters (A1, A2, ω).

The final term in equation 28, P (tj |θ,M), reflects the stochasticity in the event times them-
selves. This is used to model the probability distribution over the times of events which are
considered non-deterministic in the problem context, such as supernovae or asteroid impacts.
If there is no stochasticity in the event times, then a uniform distribution should be adopted.

C.A.L. Bailer-Jones
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5.3 Likelihood

The probability of observing data Dj from time series model M with parameters θ when the
uncertainties are σj , is P (Dj |σj , θ,M), the event likelihood. This is obtained by marginalizing
over the true, unknown event time and signal

P (Dj |σj , θ,M) =

∫∫
tj ,zj

P (Dj , tj , zj |σj , θ,M) dtjdzj

=

∫∫
tj ,zj

P (Dj |tj , zj , σj , θ,M)P (tj , zj |σj , θ,M) dtjdzj

=

∫∫
tj ,zj

P (Dj |tj , zj , σj)︸ ︷︷ ︸
Measurement model

P (tj , zj |θ,M)︸ ︷︷ ︸
Time series model

dtjdzj (31)

where the time series model and its parameters drop out of the first term because Dj is
independent of this once conditioned on the true variables, and the measurement model (via
σj) drops out of the the second term because it has nothing to do with the predictions of the
time series model. For specific, but common, situations, this two-dimensional integral can be
approximated by a 1D integral or even a function evaluation.

If we have a set of J events for which the ages and signals have been estimated independently
of one another, then the probability of observing all these, the likelihood, is

P (D|σ, θ,M) =
∏
j

P (Dj |σj , θ,M) . (32)

Armed with the likelihood for our given measurement model, time series model, and measured
data, and adopting suitable priors over the model parameters, we can now calculate all the
usual things we need for Bayesian inference (posterior PDFs, evidences etc.), typically using
MCMC methods to sample the likelihood. Specific models and an application to brown dwarf
light curves can be found in Bailer-Jones (2012). This also makes use of stochastic models,
which we now turn to.

6 Stochastic processes

A stochastic process is one in which some aspect of the system evolves randomly. Normally
we do not take this definition to include the effects of measurement noise, as then almost
all observed processes would appear stochastic. Rather, we take stochastic to mean that the
evolution of the system itself has a non-deterministic component.

If {zj} is the state of a stochastic system at times {tj}, then the multidimensional PDF
P ({zj}, {tj}) completely describes the system. The conditional PDF of future events (j > 0)
in terms of past events can then be written

P (zj+1, tj+1; zj+2, tj+2; . . . |z0, t0; zj−1, tj−1; . . .) =
P ({zj}, {tj})

P (z0, t0; zj−1, tj−1, . . .)
(33)

where for convenience I’ve adopted the notation such that . . . ≥ tj+1 ≥ tj ≥ tj−1 ≥ . . .. A
simple stochastic system is one in which all events are independent,

P ({zj}, {tj}) =
∏
j

P (zj , tj) (34)

C.A.L. Bailer-Jones
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an example of which is a pure noise process.

In this section I will use the notation N (x;µ, V ) to indicate a random number drawn from a
Gaussian PDF with mean µ and variance V . The x indicates that a different random number
is drawn for every x, i.e. N (x;µ, V ) is statistically independent of N (x′;µ, V ) if x 6= x′. N (x)
is a shorthand for N (x;µ = 0, V = 1).

6.1 Markov processes

A Markov process is a specific type of stochastic process in which the future value of the
state variable is independent of the past values conditioned on the present value, i.e.

P (zj+1, tj+1; zj+2, tj+2; . . . |z0, t0; zj−1, tj−1; . . .) = P (zj+1, tj+1; zj+2, tj+2; . . . |z0, t0) . (35)

Such “one step memory” processes are useful in practice, because a chain of past dependencies
can then be written as a probability conditional on only one previous time step, e.g.

P (z1, t1; z2, t2|z0, t0) = P (z2, t2|z1, t1)P (z1, t1|z0, t0) (36)

Markov processes are widely applicable, because many stochastic processes can be reduced
to a Markov process. For example, if we had a “two step memory” process, we could convert
it into two Markov processes.

6.2 Describing continuous stochastic processes (Langevin equation)

A general first order differential equation which describes the evolution of a continuous state
variable z(t) is

dz

dt
= A(z, t) . (37)

If A is a deterministic function then z is a deterministic process. If we want the differential
equation to describe a stochastic process, then we may add to the right-hand-side of this
a stochastic term. The differential equation is then referred to as a Langevin equation. It
turns out that in order to keep this equation self-consistent, we are limited in what kind of
stochastic term we can add. If z(t) is to describe a continuous Markov process, then the
following three conditions must apply, with dz = z(t+ dt)− z(t),

1. dz depends only on z, t and dt (this makes it Markov),

2. dz depends smoothly on z, t and dt,

3. z is continuous in the sense that dz → 0 as dt→ 0 for all t and z.

It turns out that the general form of the Langevin equation which satisfies this is

dz = A(z, t)dt+N (t)
√
D(z, t)dt (38)

where A and D are any smooth functions and D is non-negative. A and D are sometimes
called the drift and diffusion terms respectively. The presence of the second term on the
right-hand-side makes this equation a stochastic differential equation. The square-root of dt
may be unfamiliar. We could write the second term instead as N (t; 0, dt)

√
D(z, t), in which

N (t; 0, dt) is a Gaussian random variable with variance dt.

C.A.L. Bailer-Jones
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6.3 Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck (OU) process is a particular but widely-used description of a stochas-
tic process. It has a Langevin equation with constant drift and diffusion terms

dz = −1

τ
zdt+ c1/2N (t; 0, dt) (t > 0) (39)

where τ and c are positive constants, the relaxation time (dimension t) and the diffusion con-
stant (dimension z2t−1) respectively. The OU process can also be seen as the continuous-time
analogue of the discrete-time AR(1) (autoregressive) process, and so is sometimes referred to
as the (or a) CAR(1) process. It turns out that in the context of Brownian motion, z(t) is a
good description of the velocity of the particle.

The OU process is stationary, Gaussian and Markov.5 The solution of equation 39 is the
PDF of z(t) given z0 = z(t= t0) for any t > t0

P (z|t, z0, t0) = N (z;µz, Vz) where

µz = z0υ

Vz =
cτ

2
(1− υ2)

υ = e−(t−t0)/τ . (40)

The relaxation time determines the time scale over which the mean and variance change. The
diffusion constant determines the amplitude of the variance. The OU process z(t) is a mean-
reverting process: for t − t0 � τ the mean tends towards zero and the variance asymptotes
to cτ/2 (for finite τ).

It follows from equation 40 that z(t) is the sum of z0υ and a random number drawn from a
zero-mean Gaussian with time-dependent variance. Thus given the event zj−1(tj−1), we can
write down an update equation (or generative model) for the state at the next time step,
zj(tj), as update

equation
for OU
process

zj = zj−1υ + N (z)
√
Vz (41)

where now

υ = e−(tj−tj−1)/τ (42a)

Vz =
cτ

2
(1− υ2) . (42b)

For a given sequence of time steps, (t0, t1, . . .), we can use this to simulate an OU process.
Because the time series is stochastic and must be calculated at discrete steps, then even for
a fixed random number seed, the generated time series depends on the actual sequence of
steps. Some examples are shown in Fig. 5.

We can then show that zj has a Gaussian distribution with mean and variance

µ[zj ] = µ[zj−1]υ (43a)

V [zj ] = V [zj−1]υ2 + Vz (43b)

5It is actually the only stochastic process which has these three properties.

C.A.L. Bailer-Jones



Astrostats 2013. Lecture 2: Bayesian time series analysis and stochastic processes 16

−
15

−
5

0
5

10
−

15
−

5
0

5
10

0 20 60 100

−
15

−
5

0
5

10

0 20 60 100 0 20 60 100 0 20 60 100
time

si
gn

al

Figure 5: Examples of time series generated from the OU process using the update equation
(equation 41). The columns from left to right have τ = (1, 10, 100, 1000) respectively. The
rows differ only in the random number sequence used in the update equation. The other
parameters are fixed in all cases to c = 1, µ[z1] = 0, V [z1] = 0. All time series are calculated
with the same uniform time step (0.1) and all panels have the same scales. Plot generated
by R code Rcode/plot OUprocess.R.

respectively. This is subtly different from the update equation, because it concerns the
expected distribution of zj in terms of the expected distribution at the previous time step.
It has an additional variance term beyond Vz, because the uncertainty (variance) in zj is
increased by the uncertainty in zj−1.

6.4 Wiener process

The Wiener process can be considered as a special case of the OU process in which the
relaxation time scale is infinite, τ →∞ in equation 39, i.e. there is no damping. Equivalently
A = 0 in equation 38. With υ = e−∆t/τ , υ → 1 and6 τ(1 − υ2) → (∆t)2. The PDF of z(t)

6Using a Taylor expansion

τ(1− e−2(∆t)/τ ) = τ

[
1−

(
1− 2∆t

τ
+

1

2!

(
2∆t

τ

)2

− . . .

)]

= τ

[
2∆t

τ
− 1

2!

(
2∆t

τ

)2

+ . . .

]
= 2∆t as τ →∞ .
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remains Gaussian as in equation 40, but the mean and variance become (with ∆t = t− t0)

µz = z0

Vz = c(t− t0) . (44)

There is no damping, so the variance of the state variable grows monotonically with time, and
this is not a stationary process. Yet as the expectation value of the state variable is constant,
this Wiener process is referred to as being driftless. The Wiener process is sometimes taken
to describe (in a somewhat idealized form) the position of a particle undergoing Brownian
motion.

6.5 Historical note

The Langevin equation and the Wiener and OU processes all evolved from various approaches
to modelling Brownian motion. Einstein modelled Brownian motion with a kinematic ap-
proach, solving a partial differential equation of the PDF of the particle position (what we
today would call a special case of the Fokker-Planck equation). Langevin instead adopted a
dynamic approach, applying Newton’s second law to a typical particle, and writing

dz

dt
= βz + η(t) . (45)

where z is the velocity of the particle, with constant β and where the stochastic force, η(t), is
subject to 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = c δ(t− t′) for some constant c. Einstein and Langevin
essentially arrived at the same result by different methods, but both approaches had issues
concerning the assumption and approximations. Ornstein and Uhlenbeck generalized and
improved upon them.

7 Modelling the OU process

This is a little technical. An qualitative summary is given in section 8

Given a set of data D = {Dj} with measurement uncertainties σ = {σj}, we can in principle
calculate the likelihood and thus posterior PDF over the model parameters of a stochastic
process. This is, however, not quite so straight forward even for a Markov process, because
the time series model, P (zj , tj |θ,M), which appears in the equation for the likelihood (equa-
tion 32), now depends on the PDF at the previous time step. A relatively simple solution
can nonetheless be obtained if we can assume uncertainties on the times to be negligible,
and if both the signal measurement model and the stochastic part of the time series model
are Gaussian. The latter is the case for the OU process. The result is a recurrence relation
in which each event likelihood is a Gaussian distribution with mean and variance depending
on both the signal uncertainties for the present and previous events and the variance of the
OU process (which depends on the time step size). A full explanation and derivation can be
found in section A.2 of Bailer-Jones (2012). Below I just give the result, which we will then
use to analyse some data.

C.A.L. Bailer-Jones
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Starting from equation 31, making the above assumptions, and using the properties of the
OU process, we find that we can write the event likelihood as a Gaussian

P (Dj |σj , θ,M) =
1

T2 − T1

∫
zj

P (yj |zj , σyj )P (zj |tj , θ,M) dzj

=
1

T2 − T1

1√
2πV [yj ]

exp

(
−(yj − µ[yj ])

2

2V [yj ]

)
(T1 < tj < T2) (46)

which has mean and variance

µ[yj ] = 0 + µ[zj ] (47a)

V [yj ] = σ2
yj + V [zj ] (47b)

respectively, with µ[zj ] and V [zj ] given by equation 43. For simplicity I have additionally
assumed that the time component of the time series model, P (tj |θ,M), is uniform from T1

to T2.

As this is a Markov process, the likelihood depends on the previous time step through µ[zj−1]
and V [zj−1] appearing in equation 43. These we must estimate using the data at that previous
time step. How, for any time step j (such as j − 1), do the values of µ[zj ] and V [zj ] depend
on yj and σyj? This is equivalent to asking what is the posterior PDF over zj using both
the data at tj and the prior value of zj (which is the posterior from the previous time step).
This is given by Bayes theorem. It turns out that this posterior PDF over zj is a Gaussian
with mean and variance

µ′[zj ] =
yjV [zj ] + µ[zj ]σ

2
yj

V [zj ] + σ2
yj

(48a)

V ′[zj ] =
V [zj ]σ

2
yj

V [zj ] + σ2
yj

(48b)

respectively, where the prime symbol is used to distinguish these posterior moments from
the prior ones in equation 43. It is these quantities which we then use at the next event as
the estimates of the mean and variance of z. Thus, at iteration (event) j, when we evaluate
equation 47 )and hence the likelihood), we use µ′[zj−1] and V ′[zj−1] as our estimates of
µ[zj−1] and V [zj−1]. This is how we introduce a dependence on the previous measurement
(the Markov property). We then calculate the mean and variance of the posterior for zj using
equation 48, and will then use these in the next iteration. The result is a recurrence relation
for the posterior PDF of zj . At each time step we can siphon off the relevant quantities in
order to calculate the event likelihood (equation 46).

To initialize the process we must specify initial values µ[z1] and V [z1]. We use these in
equation 47 to calculate µ[y1] and V [y1] and hence the likelihood for the first event, y1, from
equation 46. We then calculate the posterior moments using equation 48. For the next event,
j = 2, these posterior moments are assigned to µ[zj−1] and V [zj−1] in equation 43 and the
likelihood calculated. The procedure is iterated through all the events.

8 Parameter estimation with the OU process

The following R code estimates the posterior PDF for an OU process using the ideas in the
previous section. It makes use of the functions defined in the appendix in section C.
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I first simulate an OU process at a series of time steps using the update equation (equa-
tion 41). The mean and standard deviation of the state variable are shown as the magenta
points/error bars in the left panel of Figure 6. This is the true process: there is no mea-
surement noise. From each of these a value is drawn and measurement noise added: this is
shown as the black point/error bar. These, together with value for the OU process parame-
ters, are then used to predict the process. The mean and variance of the predicted PDF at
each time step is shown with the red points/error bars in the right panel of Figure 6. As a
Markov process, each of these predictions uses the data at just the previous data point. This
“prior” prediction of event j is then combined with the data at event j to make a “posterior”
prediction (equation 48; not plotted), which is propagated by equation 43 to give the prior
prediction for the next event.

The R code uses MCMC to sample the posterior PDF over the OU process parameters. At
each parameter sample, the whole OU process is predicted and the likelihood calculated as
described in section 7. An example of the sampling is show in Figure 7.

The OU process as defined has four parameters, c, τ , µ[z1], and V [z1]. The latter two are taken
as fixed in the following. In practice we may choose to set µ[z1] to the initial value of the time
series, and V [z1] = 0, which I do here. Concerning the priors, I use the gamma distributions
for both c and τ , which forces their values to be positive. To suppress vanishingly small
values, I set the shape parameter of the gamma distribution to be 1.5. The scale parameters
I set as follows. For τ , I set it to tenth of the duration of the time series. This is somewhat
arbitrary, so sensitivity to it should be checked. As the long-term variance of an OU process
is cτ/2, then I set the scale for c to be this asymptotic value, 2ς2/τ , where ς is the standard
deviation of the time series. Thus there are two “hyperparameters” (parameters of the prior
PDF), called alpha in the code.

R file: Rcode/exp_OUprocess.R

# C.A.L. Bailer-Jones

# Astrostats 2013

# This file: exp_OUprocess.R

# R code for experimenting with modelling the OU process

source("OUprocess.R")

source("monte_carlo.R")

set.seed(102)

# Generate a time series from an OU process

ouproc <- list(diffcon=1, relax=1, zstartmean=0, zstartsd=0)

eventTimes <- sort(c(0, 20, runif(n=48, min=0, max=20)))

ysigma <- 0.1

temp <- gen.OUprocess(ouproc=ouproc, eventTimes=eventTimes, ysigma=ysigma)

obsdata <- temp$obsdata

procDist <- temp$procDist

# Plot data, ... first overplotting the distributions for each point from the true process

# i.e. the mean and sd of the update equation

oplot.obsdata.OUprocess(obsdata=obsdata, procDist=procDist, fname="ouprocdat1.pdf")

# ... then overplotting the prior PDF evaluated for the OU process at the given parameters

oplot.obsdata.OUprocess(obsdata=obsdata, ouproc=ouproc, fname="ouprocdat2.pdf")

C.A.L. Bailer-Jones
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Figure 6: Data set (black) generated from the OU process using update equation 41. The
black error bars characterize the Gaussian measurement noise. The same data are shown
in both panels. The magenta points/bars in the left panel show the mean and standard
deviation of the update equations as given in equation 42. These error bars indicate the
intrinsic variance of the process itself: they are not measurement noise. Each data point
(black point) has been generated by drawing a random number from the Gaussian distribution
characterized by the magenta point/bar, and then adding Gaussian measurement noise (zero
mean, standard deviation 0.1). The red points/error bars in the right panel show the mean
and variance of the prior predicted PDF of each time step (i.e. not using the measurement at
that time step), as given by equation 43 (using the true values of the OU process parameters).
Note that the red error bars cannot be smaller than the magenta ones; they are very similar
in this example. The magenta and red means differ. The true parameters of the generative
model are c = 1, τ = 1 as well as the initial conditions µ[z1] = 0, V [z1] = 0.

# Model assumes data are zero mean

obsdata[,3] <- obsdata[,3] - mean(obsdata[,3])

# For the following inference, we fix the OU process parameters

# ouprocFixed <- c(zstartmean, zstartsd) and just sample over the

# parameters theta = c(diffcon, relax). The scale hyperparameters on the

# gamma priors are specified by alpha = c(scale_diffcon, scale_relax)

ouprocFixed <- c(0,0) # c(zstartmean, zstartsd)

alpha <- c(1,1) # c(scale_diffcon, scale_relax)

# Or, using the prescription in the lecture

# trange <- diff(range(obsdata[,1]))/10

# alpha <- c(2*var(obsdata[,3])/trange, trange)

# Use MCMC to sample posterior for OU process: c(diffcon, relax)

sampleCov <- make.covariance.matrix(sampleSD=c(0.1, 0.1), sampleCor=0)

thetaInit <- c(3,3)

set.seed(150)

postSamp <- metrop(func=logpost.OUprocess, thetaInit=thetaInit, Nburnin=0,

Nsamp=1e4, verbose=1e3, sampleCov=sampleCov,

obsdata=obsdata, ouprocFixed=ouprocFixed, alpha=alpha)
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Figure 7: Example of a posterior PDF sampling of the OU process model for the data shown
in Fig. 6. The panels in the left column show the chains for the two parameters c (“diffcon”)
and τ (“relax”). The panels on the right show the 1D PDFs generated from the samples via
density estimation. The vertical red lines indicate the true parameters.

# Plot MCMC chains and use density estimation to plot 1D posterior PDFs from these.

thetaTrue <- as.numeric(ouproc[1:2])

parnames <- c("diffcon", "relax")

pdf("ouprocdat_mcmc.pdf", width=7, height=6)

par(mfrow=c(2,2), mar=c(3.0,3.0,0.5,0.5), oma=c(1,1,1,1), mgp=c(1.8,0.6,0), cex=1.0)

for(p in 3:4) { # columns of postSamp

plot(1:nrow(postSamp), postSamp[,p], type="l", xlab="iteration", ylab=parnames[p-2])

postDen <- density(postSamp[,p], n=2^10)

plot(postDen$x, postDen$y, type="l", xlab=parnames[p-2], ylab="density")

abline(v=thetaTrue[p-2], col="red")

}

dev.off()
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Figure 8: Three g-band quasar light curves. From top to bottom their ID numbers are:
1001265, 1002162, 208035.

9 Comparison of sinusoidal and OU process models on real
data

A number of different studies have demonstrated that a large fraction of quasar light curves
can be described better by the OU process than by several other deterministic or stochastic
processes. One particular study which uses the Bayesian evidence for this purpose is Andrae
et al. (2013). In the code below we calculate the evidence and K-fold CV likelihood for the
sinusoidal and OU process models on three light curves from this study (Figure 8).

R file: Rcode/model_comparison_2.R

# C.A.L. Bailer-Jones

# Astrostats 2013

# This file: model_comparison_2.R

# R code to calculate evidence and K-fold CV likelihood for sinusoidal

# and OU process models on a real data set.
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library(gplots) # for plotCI()

source("sinusoidal.R")

source("OUprocess.R")

source("monte_carlo.R")

source("kfoldCV.R")

########## Read in data

# Files:

#obsdata <- read.table("../data/g-band-LC_1001265.dat", header=FALSE)

#obsdata <- read.table("../data/g-band-LC_1002162.dat", header=FALSE)

obsdata <- read.table("../data/g-band-LC_208035.dat", header=FALSE)

# Models assumes data are zero mean

obsdata[,3] <- obsdata[,3] - mean(obsdata[,3])

plotCI(obsdata[,1], obsdata[,3], uiw=obsdata[,4], err="y", xlab="time", ylab="signal",

pch=18, type="n", gap=0, sfrac=0.01)

########## Set priors and fixed parameters

zrange <- diff(range(obsdata[,3]))

alphaSinusoidal <- 0.5*c(zrange/2, zrange/2, 1/1000) # c(sd_a1, sd_a2, scale_freq)

#

ouprocFixed <- c(obsdata[,3], 0) # c(zstartmean, zstartsd)

tscale <- diff(range(obsdata[,1]))/10

alphaOUprocess <- 0.5*c(2*var(obsdata[,3])/tscale, tscale) # c(scale_diffcon, scale_relax)

########## Calculate evidences

set.seed(100)

# sinusoidal model

Nsamp <- 1e4

priorSamples <- sampleprior.sinusoidal(Nsamp, alphaSinusoidal)

logLike <- vector(length=Nsamp)

for(i in 1:Nsamp) {

logLike[i] <- loglike.sinusoidal(priorSamples[i,], obsdata)

}

evSM <- mean(10^logLike)

# OUprocess

Nsamp <- 1e4

priorSamples <- sampleprior.OUprocess(Nsamp, alphaOUprocess)

logLike <- vector(length=Nsamp)

for(i in 1:Nsamp) {

logLike[i] <- loglike.OUprocess(priorSamples[i,], obsdata, ouprocFixed)

}

evOU <- mean(10^logLike)

#

cat("Bayes factor [OUprocess/sinusoidal] = ", evOU/evSM, "\n")

cat("log10 Bayes factor [OUprocess - sinusoidal] = ", log10(evOU/evSM), "\n")

cat("log10 Evidences [OUprocess, sinusoidal] = ", log10(evOU), log10(evSM), "\n")

########## Calculate K-fold CV likelihoods

set.seed(100)

# sinusoidal model: c(a1, a2, freq)

sampleCov <- make.covariance.matrix(sampleSD=alphaSinusoidal/50, sampleCor=0)
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thetaInit <- alphaSinusoidal

kcvSM <- kfoldcv(Npart=10, obsdata=obsdata, logpost=logpost.sinusoidal,

loglike=loglike.sinusoidal, sampleCov=sampleCov, thetaInit=thetaInit,

Nburnin=1e3, Nsamp=1e4, alpha=alphaSinusoidal)

# OUprocess model: c(diffcon, relax)

sampleCov <- make.covariance.matrix(sampleSD=alphaOUprocess, sampleCor=0)

thetaInit <- alphaOUprocess

kcvOU <- kfoldcv(Npart=10, obsdata=obsdata, logpost=logpost.OUprocess,

loglike=loglike.OUprocess, sampleCov=sampleCov, thetaInit=thetaInit,

Nburnin=1e3, Nsamp=1e4, ouprocFixed=ouprocFixed, alpha=alphaOUprocess)

#

cat("log10 K-fold CV likelihood [OUprocess, sinusoidal]", kcvOU, kcvSM, "\n")

cat("Difference log10 K-fold CV likelihood [OUprocess - sinusoidal]", kcvOU - kcvSM, "\n")

######### Calculate posterior PDFs

# should really check the MCMC in the K-fold CV likelihood by plotting samples and

# posterior PDFs for the data partitions used there. But get a good idea by sampling

# the whole data set, as done here.

# sinusoidal model: c(a1, a2, freq)

sampleCov <- make.covariance.matrix(sampleSD=alphaSinusoidal/25, sampleCor=0)

thetaInit <- alphaSinusoidal

postSamp <- metrop(func=logpost.sinusoidal, thetaInit=thetaInit, Nburnin=1e3,

Nsamp=1e4, verbose=1e3, sampleCov=sampleCov,

obsdata=obsdata, alpha=alphaSinusoidal)

parnames <- c("a1", "a2", "freq")

par(mfrow=c(3,2), mar=c(3.0,3.0,0.5,0.5), oma=c(1,1,1,1), mgp=c(1.8,0.6,0), cex=1.0)

for(p in 3:5) { # columns of postSamp

plot(1:nrow(postSamp), postSamp[,p], type="l", xlab="iteration", ylab=parnames[p-2])

postDen <- density(postSamp[,p], n=2^10)

plot(postDen$x, postDen$y, type="l", xlab=parnames[p-2], ylab="density")

}

10 Exercises

R code to help you perform these exercises has been supplied above in the relevant sections.
Recall that the analyses above assume the data to have zero mean signal, so you’ll need to
subtract the mean (even if you generate a finite amount of data from a zero mean process).

1. Sinusoidal model 1. Simulate data from a sinusoidal model (equation 2) and add
some Gaussian noise (see section 4). Calculate and plot the Schuster periodogram
(equation 21) as well as the (unnormalized) log posterior PDF over frequency (i.e.
the Bayesian periodogram), for the two cases of known common noise (equation 20)
and unknown noise (equation 26). Experiment with changing the amount of data, the
amplitudes and the frequency in relation to the time span.

2. Sinusoidal model 2. Taking one of your noisy simulated sinusoidal data sets, use
an MCMC algorithm to infer the model parameters (i.e. sample the posterior). (See
section 4.)
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3. OU process 1. Using the code in section 8, simulate data from an OU process using
the update equations 41 and 42 for specific values of the two model parameters, τ and
c. Get a feel for how changing the parameters alters the properties of the process the
parameters. For fixed parameters, also get a feel for how much the time series changes
just by changing the random number seed. (In addition to plotting the generated data
points, plot the distributions – as mean and error bar – of the update equations.)

4. OU process 2. Simulate data from an OU process as in the previous exercise and
add some Gaussian noise. Using the code in section 8, infer the model parameters (i.e.
sample the posterior).

5. Astronomical variability. Look at the astronomical time series provided and exam-
ined in section 9. Visual inspection suggests this may show periodic variability, but
maybe a stochastic model explains the data better? Adopting suitable priors, use the
Bayesian evidence to compare a periodic model with an OU process model. (You may
also use the K-fold CV likelihood, but it can take a while to run). Infer the posterior
PDFs over the parameters of the two models to check whether there is a dominant
solution. For comparison you may also want to calculate the various periodograms) for
the two models, discussed in section 3.

A Further reading

Andrae R., Kim D.-W., Bailer-Jones C.A.L., 2013, Assessment of stochastic and deterministic
models of 6 304 quasar lightcurves from SDSS Stripe 82, A&A in press
http://arxiv.org/abs/1304.2863

Bailer-Jones C.A.L., 2012, A Bayesian method for the analysis of deterministic and stochastic
time series, A&A 546, A89
See http://www.mpia.de/~calj/ctsmod.html for more information and software

Bretthorst G.L., 1998, Bayesian spectrum analysis and parameter estimation, Lecture notes
in statistics vol. 48, Springer
Out of print, but available from http://http://bayes.wustl.edu/glb/book.pdf

Gardiner C., 2009, Stochastic methods, Springer, 4th edition
A definitive work, but is hard going after the first few chapters

Gillespie D.T., 1996, Exact numerical simulation of the Ornstein–Uhlenbeck process and its
integral, Phys. Rev. E, 54, 2084

Gillespie D.T., 1996b, The mathematics of Brownian motion and Johnson noise, Am. J.
Phys. 64, 225
A nice introduction to stochastic processes

Gregory P.C., 2005, Bayesian logical data analysis for the physical sciences, Cambridge Uni-
versity Press
Chapter 13 is on spectral analysis

Scott M., 2011, Applied stochastic processes in science and engineering, unpublished book,
http://www.math.uwaterloo.ca/~mscott/Little_Notes.pdf
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B R functions for the sinusoidal model

R file: Rcode/sinusoidal.R

# C.A.L. Bailer-Jones

# Astrostats 2013

# This file: sinusoidal.R

# R functions related to the single frequency sinusoidal model

# An event is described by a 4 element vector c(s, s.sd, y, y.sd)

# where s is the time and y is the signal and s.sd and y.sd their

# uncertainties, respectively.

# Nevents is the number of events

# obsdata is a matrix of Nevents (rows) and 4 ordered columns c(s, s.sd, y, y.sd)

# Given sinmod and times eventTimes (vector), generate data from a sinusoidal model,

# optionally with additional Gaussian measurement noise of standard deviation ysigma.

# sigma can be a vector of length eventTimes, or a scalar. Default value is zero.

# Return in format obsdata.

gen.sinusoidal <- function(sinmod, eventTimes, ysigma=0) {

Nevents <- length(eventTimes)

obsdata <- matrix(data=0, nrow=Nevents, ncol=4)

obsdata[,1] <- eventTimes

obsdata[,2] <- 0

obsdata[,4] <- ysigma

omegat <- 2*pi*sinmod$freq*obsdata[,1]

obsdata[,3] <- sinmod$a1*cos(omegat) + sinmod$a2*sin(omegat)

obsdata[,3] <- obsdata[,3] + rnorm(Nevents, mean=0, sd=obsdata[,4])

return(obsdata)

}

# Plot obsdata, and optionally overplot a sinusoidal model with parameters sinmod.

# trange=c(tmin,tmax) can be supplied, otherwise (if it’s NULL) is calculated from the data.

# If ploterr=TRUE, plot error bars.

# If fname is supplied, save the plot in a PDF with this name.

oplot.obsdata.sinusoidal <- function(obsdata, sinmod=NULL, trange=NULL,

ploterr=TRUE, fname=NULL) {

library(gplots)

if(!is.null(fname)) pdf(fname, width=6, height=5)

par(mfrow=c(1,1), mgp=c(2.0,0.8,0), mar=c(3.5,4.0,1.0,1.0), oma=c(0,0,2.0,0), cex=1.2)

if(is.null(trange)) {

trange <- range(c(obsdata[,1]+obsdata[,2], obsdata[,1]-obsdata[,2]))

}

if(!is.null(sinmod)) {

tmod <- seq(from=min(trange), to=max(trange), length.out=1e3)

omegat <- 2*pi*sinmod$freq*tmod

ymod <- sinmod$a1*cos(omegat) + sinmod$a2*sin(omegat)

ymin <- min(ymod, obsdata[,3]-obsdata[,4])

ymax <- max(ymod, obsdata[,3]+obsdata[,4])

} else {

ymin <- min(obsdata[,3]-obsdata[,4])

ymax <- max(obsdata[,3]+obsdata[,4])

}

plot(obsdata[,1], obsdata[,3], xlim=trange, ylim=c(ymin,ymax), pch=18,
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xlab="time", ylab="signal")

if(ploterr) plotCI(obsdata[,1], obsdata[,3], uiw=obsdata[,4], err="y", type="n",

gap=0, sfrac=0.01, add=TRUE)

if(!is.null(sinmod)) {

lines(tmod, ymod, col="red")

}

mtext("measured = black, model = red", padj=-1)

if(!is.null(fname)) dev.off()

}

# Calculate the Schuster periodogram of obsdata at NFreq uniformly spaced

# frequencies between minFreq and maxFreq.

# Plot this as well as the unnormalized posterior assuming

# (1) a common sigma for all the data equal to the mean of obsdata[,4].

# (2) sigma is unknown

# as well as the other assumptions noted in the script for the

# approximations to hold.

# If fname is supplied, save the plot in a PDF with this name.

schuster <- function(obsdata=obsdata, minFreq=NULL, maxFreq=NULL, NFreq=NULL, fname=NULL) {

cat("mean, sd of data =", mean(obsdata[,3]), sd(obsdata[,3]), "\n")

J <- nrow(obsdata)

sampFreq <- seq(from=minFreq, to=maxFreq, length.out=NFreq)

schuster <- vector(mode="numeric", length=length(sampFreq))

for(f in 1:length(sampFreq)) {

omegat <- 2*pi*sampFreq[f]*obsdata[,1]

R <- sum(obsdata[,3]*cos(omegat))

I <- sum(obsdata[,3]*sin(omegat))

schuster[f] <- (R^2 + I^2)/J

}

schusterNorm <- schuster/( sum(schuster)*(maxFreq-minFreq)/NFreq ) # set area to unity

#

if(!is.null(fname)) pdf(fname, width=7, height=6)

par(mfrow=c(3,1), mar=c(0.5,3.5,0,0), oma=c(3.0,0,1,1), mgp=c(2.0,0.6,0), cex=1.1)

plot(sampFreq, schusterNorm, xaxt="n", ylab="power (normalized)", type="l")

text(max(sampFreq), 0.9*max(schusterNorm), "Schuster periodogram", pos=2)

# posterior periodogram with known common sigma

logpost <- (1/log(10))*schuster/mean(obsdata[,4])^2

plot(sampFreq, logpost, xaxt="n", ylab="log10post", type="l")

text(max(sampFreq), 0.9*max(logpost), "assuming common sigma", pos=2)

# posterior periodogram with unknown sigma

# print(sum(obsdata[,3]^2)/2 - schuster) # check: are always positive

posterior <- (sum(obsdata[,3]^2)/2 - schuster)^((2-J)/2)

plot(sampFreq, log10(posterior), ylab="log10post", type="l")

text(max(sampFreq), 0.7*max(log10(posterior)), "assuming unknown sigma", pos=2)

#

mtext("frequency", side=1, line=1.5, outer=TRUE, cex=1.1)

if(!is.null(fname)) dev.off()

}

# Return log10(unnormalized posterior) of the sinusoidal model

# (see notes on the functions called)

logpost.sinusoidal <- function(theta, obsdata, alpha, ind=NULL) {

logprior <- logprior.sinusoidal(theta, alpha)

if(is.finite(logprior)) { # only evaluate model if parameters are sensible

return( loglike.sinusoidal(theta, obsdata, ind) + logprior )
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} else {

return(-Inf)

}

}

# Return log10(likelihood) of the sinusoidal model on rows ind of

# obsdata (to within an additive constant)

# with parameters theta = c(a1, a2, freq)

# ... is needed to pick up the unwanted alpha passed by kfoldcv(),

loglike.sinusoidal <- function(theta, obsdata, ind=NULL, ...) {

if(is.null(ind)) ind <- 1:nrow(obsdata)

omegat <- 2*pi*theta[3]*obsdata[ind,1]

modpred <- theta[1]*cos(omegat) + theta[2]*sin(omegat)

logEventLike <- (1/log(10))*dnorm(x=obsdata[ind,3], mean=modpred,

sd=sqrt(obsdata[ind,4]), log=TRUE)

return( sum(logEventLike) )

}

# Return log10(unnormalized prior) of the sinusoidal model

# with parameters theta = c(a1, a2, freq) and selected prior

# hyperparameters alpha

logprior.sinusoidal <- function(theta, alpha) {

a1Prior <- dnorm(x=theta[1], mean=0, sd=alpha[1])

a2Prior <- dnorm(x=theta[2], mean=0, sd=alpha[2])

freqPrior <- dgamma(x=theta[3], shape=1.5, scale=alpha[3])

return( sum(log10(a1Prior), log10(a2Prior), log10(freqPrior)) )

}

# return Nsamp samples from prior

# (is consistent with logprior.sinusoidal)

sampleprior.sinusoidal <- function(Nsamp, alpha) {

a1 <- rnorm(n=Nsamp, mean=0, sd=alpha[1])

a2 <- rnorm(n=Nsamp, mean=0, sd=alpha[2])

freq <- rgamma(n=Nsamp, shape=1.5, scale=alpha[3])

return(cbind(a1, a2, freq))

}

C R functions for the OU process

R file: Rcode/OUprocess.R

# C.A.L. Bailer-Jones

# Astrostats 2013

# This file: OUprocess.R

# R functions related to the OU process

# An event is described by a 4 element vector c(s, s.sd, y, y.sd)

# where s is the time and y is the signal and s.sd and y.sd their

# uncertainties, respectively.

# Nevents is the number of events

# obsdata is a matrix of Nevents (rows) and 4 ordered columns c(s, s.sd, y, y.sd)

# ouproc is a named list of the parameters of the OU process
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# ouproc = list(diffcon, relax, zstartmean, zstartsd)

# zstartmean and zstartsd are the initial conditions.

# Given ouproc and times eventTimes (vector), generate data from an OU process

# using the update equations.

# If ysigma>0 add Gaussian measurement noise with this standard deviation.

# ysigma can be a vector of length eventTimes, or a scalar. Default value is zero.

# Return a two element list:

# obsdata

# procDist, a dataframe with Nevents rows and 2 columns:

# mean and variance of the process itself at each time step

gen.OUprocess <- function(ouproc, eventTimes, ysigma=0) {

Nevents <- length(eventTimes)

obsdata <- matrix(data=0, nrow=Nevents, ncol=4)

zMean <- vector(mode="numeric", length=Nevents)

zVar <- vector(mode="numeric", length=Nevents)

obsdata[,1] <- eventTimes

obsdata[,2] <- 0

zMean[1] <- ouproc$zstartmean

zVar[1] <- ouproc$zstartsd

obsdata[1,3] <- ouproc$zstartmean + rnorm(1, mean=0, sd=ouproc$zstartsd)

for(j in 2:Nevents) {

nu <- exp(-(obsdata[j,1]-obsdata[j-1,1])/ouproc$relax)

Vz <- (ouproc$diffcon*ouproc$relax/2)*(1-nu^2)

zMean[j] <- obsdata[j-1,3]*nu

zVar[j] <- Vz

obsdata[j,3] <- rnorm(1, mean=zMean[j], sd=sqrt(zVar[j]))

}

if(ysigma>0) { # add measurement noise

obsdata[,4] <- ysigma

obsdata[,3] <- obsdata[,3] + rnorm(Nevents, mean=0, sd=obsdata[j,4])

}

return(list(obsdata=obsdata, procDist=data.frame(zMean=zMean, zVar=zVar)))

}

# Plot obsdata, and optionally overplot either (if defined)

# (1) points with mean and variance given by procDist, or

# (2) predicted priors of an OU process evaluated on these data with parameters ouproc.

# If both are defined then only (1) is plotted. (This will usually be used to

# plot the mean and sd of the update formula used to generate obsdata.)

# The data are plotted in black, procDist in magenta, the predicted priors in red.

# trange=c(tmin,tmax) can be supplied, otherwise (if it’s NULL) is calculated from the data.

# If ploterr=TRUE, plot error bars on the data.

# If fname is supplied, save the plot in a PDF with this name.

# NOTE: This will give warnings if the error bars are too small to plot

oplot.obsdata.OUprocess <- function(obsdata, procDist=NULL, ouproc=NULL, trange=NULL,

ploterr=TRUE, fname=NULL) {

library(gplots)

if(!is.null(fname)) pdf(fname, width=6, height=5)

if(is.null(trange)) {

trange <- range(c(obsdata[,1]+obsdata[,2], obsdata[,1]-obsdata[,2]))

}

if(!is.null(ouproc)) {

procParam <- eval.OUprocess(ouproc, obsdata)

}
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if(!is.null(procDist)) {

procParam <- procDist

}

par(mfrow=c(1,1), mgp=c(2.0,0.8,0), mar=c(3.5,3.5,1.0,1.0), oma=c(0,0,1,0), cex=1.1)

if(!is.null(procParam)) {

ymin <- min(c(procParam$zMean-sqrt(procParam$zVar), obsdata[,3]-obsdata[,4]))

ymax <- max(c(procParam$zMean+sqrt(procParam$zVar), obsdata[,3]+obsdata[,4]))

} else {

ymin <- min(obsdata[,3]-obsdata[,4])

ymax <- max(obsdata[,3]+obsdata[,4])

}

plot(obsdata[,1], obsdata[,3], xlim=trange, ylim=c(ymin,ymax), pch=18,

xlab="time", ylab="signal")

if(ploterr) plotCI(obsdata[,1], obsdata[,3], uiw=obsdata[,4], err="y", type="n",

gap=0, sfrac=0.01, add=TRUE)

if(!is.null(procDist)) {

points(obsdata[,1], procDist$zMean, pch=8, col="magenta")

plotCI(obsdata[,1], procDist$zMean, uiw=sqrt(procDist$zVar), err="y", type="n",

col="magenta", gap=0, sfrac=0.01, add=TRUE)

}

if(!is.null(ouproc) && is.null(procDist)) {

points(obsdata[,1], procParam$zMean, pch=8, col="red")

plotCI(obsdata[,1], procParam$zMean, uiw=sqrt(procParam$zVar), err="y", type="n",

col="red", gap=0, sfrac=0.01, add=TRUE)

}

mtext("measured = black, true process = magenta, model prior = red", padj=-1)

if(!is.null(fname)) dev.off()

}

# Evaluate an OU process of given parameters using given obsdata.

# Specifially, return a ncol(obsdata) x 2 dataframe with named columns

# zMean and zVar which give the mean and variance of the prior PDF

# of the OU process variable at each event.

# Note: probably slower than it should be due to presence of loop

eval.OUprocess <- function(ouproc, obsdata) {

Nevents <- nrow(obsdata)

zMean <- vector(mode="numeric", length=Nevents)

zVar <- vector(mode="numeric", length=Nevents)

j <- 1

zMean[j] <- ouproc$zstartmean

zVar[j] <- ouproc$zstartsd^2

for(j in 1:Nevents) {

if(j > 1) {

# warning: divide by zero if relax=0 (controlled by prior)

nu <- exp(-(obsdata[j,1]-obsdata[j-1,1])/ouproc$relax)

Vz <- (ouproc$diffcon*ouproc$relax/2)*(1-nu^2)

zMean[j] <- zMeanPost*nu # + ouproc$offset*(1-nu)

zVar[j] <- zVarPost*nu^2 + Vz

}

if(j < Nevents) { # calculate posterior

ysigsq <- obsdata[j,4]^2

denom <- ysigsq + zVar[j]

if(denom==0) { # controlled by data/prior

stop("Both ysigsq and zVar are zero, so posterior moments are undefined")

}
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zMeanPost <- (obsdata[j,3]*zVar[j] + zMean[j]*ysigsq)/denom

zVarPost <- zVar[j]*ysigsq/denom

}

}

return(data.frame(zMean=zMean, zVar=zVar))

}

# Return log10(unnormalized posterior) of the OU process

# (see notes on functions called)

logpost.OUprocess <- function(theta, obsdata, ouprocFixed, alpha, ind=NULL) {

logprior <- logprior.OUprocess(theta, alpha)

if(is.finite(logprior)) { # only evaluate model if parameters are sensible

return( loglike.OUprocess(theta, obsdata, ouprocFixed, ind) + logprior )

} else {

return(-Inf)

}

}

# Return log10(likelihood) of the OU process defined by parameters

# theta = c(diffcon, relax) and ouprocFixed = c(zstartmean, zstartsd)

# for events ind in the time series obsdata (to within an additive

# constant). We require the full set of data in order to propagate the

# estimates of the process parameters along the chain of

# events. However, the likelihood is calculated and returned only for

# the events specified in ind. (This can be used for calculating the

# k-fold CV likelihood, for example.) If ind=NULL (the default), the

# likelihood for all the data is calculated.

# ... is needed to pick up the unwanted alpha passed by kfoldcv().

# Note: Function is much slower than other loglike functions, presumably

# due to eval.OUprocess()

loglike.OUprocess <- function(theta, obsdata, ouprocFixed, ind=NULL, ...) {

if(is.null(ind)) ind <- 1:nrow(obsdata)

ouproc <- list(diffcon=theta[1], relax=theta[2], zstartmean=ouprocFixed[1],

zstartsd=ouprocFixed[2])

procParam <- eval.OUprocess(ouproc, obsdata)

yMean <- procParam$zMean

yVar <- obsdata[,4]^2 + procParam$zVar

logEventLike <- (1/log(10))*dnorm(x=obsdata[ind,3], mean=yMean[ind],

sd=sqrt(yVar[ind]), log=TRUE)

return( sum(logEventLike) )

}

# Return log10(unnormalized prior) unnormalized prior of the OU process

# with parameters theta = c(diffcon, relax) and selected prior

# hyperparameters alpha.

# zstartmean and zstartsd are assumed fixed.

logprior.OUprocess <- function(theta, alpha) {

diffconPrior <- dgamma(x=theta[1], shape=1.5, scale=alpha[1])

relaxPrior <- dgamma(x=theta[2], shape=1.5, scale=alpha[2])

return( sum(log10(diffconPrior), log10(relaxPrior)) )

}

# return Nsamp samples from prior

# (is consistent with logprior.OUprocess)

sampleprior.OUprocess <- function(Nsamp, alpha) {
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diffcon <- rgamma(n=Nsamp, shape=1.5, scale=alpha[1])

relax <- rgamma(n=Nsamp, shape=1.5, scale=alpha[2])

return(cbind(diffcon, relax))

}

D Spectral analysis

D.1 General concepts

The auto-covariance function of the signal z(t) is auto-
covariance

C(t′) = lim
T→∞

1

T

∫ T

0
z(t)z(t+ t′) dt = 〈z(t)z(t+ t′)〉 . (49)

If z(t) is stationary, then the auto-covariance is independent of t.

The power spectrum of a stationary process z(t) is defined as power
spectrum

S(ω) = lim
T→∞

1

2πT
|φ(ω)|2 (50)

where φ(ω) is the Fourier transform of the signal

φ(ω) =

∫ T

−T
z(t)e−iωt dt . (51)

Taking the limit T →∞, it can then be shown that

S(ω) =
1

π

∫ ∞
−∞

C(t)e−iωt dt

=
2

π

∫ ∞
0

C(t) cos(ωt) dt (52)

the second line following by taking just the real part and with 0 < ω <∞, and

C(t) =

∫ ∞
0

S(ω) cos(ωt) dω . (53)

This shows that the power spectrum is the Fourier transform (real part, positive frequencies)
of the auto-covariance function, and is known as the Wiener–Khintchine theorem. Setting
t′ = 0 in equation 49 and t = 0 in equation 53 we see that

〈z(t)2〉 =

∫ ∞
0

S(ω) dω . (54)

Thus we see that the power spectrum, S(ω), is the portion of intensity of the signal with
frequencies between ω and ω + dω. Note that it gives the frequency spectrum of 〈z(t)2〉 and
not of z(t) itself.

Comparing equation 21 with equation 50 we see that the Schuster periodogram is a discrete
approximation of the power spectrum over a finite time scale.

C.A.L. Bailer-Jones
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Figure 9: Power spectrum for an OU process with τ = c = 1 on a linear scale (left) and a
log-log scale (right). Plot generated by R code Rcode/plot OUprocess.R.

D.2 OU process

The auto-covariance and power spectrum of a fully relaxed OU process, one for which t−t0 �
τ , is

C(t) =
cτ

2
e−t/τ (55)

S(ω) =
1

π

cτ2

1 + (ωτ)2
(56)

This power spectrum is shown in Fig. 9. The turn-over in the log-log power spectrum occurs
at ω ∼ 1/τ . For much smaller frequencies the slope is zero; for much larger frequencies the
slope is -2 (these limits reached for any values of c and τ).

C.A.L. Bailer-Jones
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